Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Reinforcement learning (RL) is crucial for learning to adapt to new environments. In RL, the prediction error is an important component that compares the expected and actual rewards. Dopamine plays a critical role in encoding these prediction errors. In my ...
Operators from various industries have been pushing the adoption of wireless sensing nodes for industrial monitoring, and such efforts have produced sizeable condition monitoring datasets that can be used to build diagnosis algorithms capable of warning ma ...
Whereas the ability of deep networks to produce useful predictions on many kinds of data has been amply demonstrated, estimating the reliability of these predictions remains challenging. Sampling approaches such as MC-Dropout and Deep Ensembles have emerge ...
Recently, there has been an arms race of pose forecasting methods aimed at solving the spatio-temporal task of predicting a sequence of future 3D poses of a person given a sequence of past observed ones. However, the lack of unified benchmarks and limited ...
An important function of the brain is to interpret incoming sensory information from the outside world to guide adaptive behavior. Understanding how and where sensory information is transformed into motor commands in a context- and learning-dependent manne ...
In practice, most operational activity-based models have focused on single-day analyses. This common simplifying assumption significantly limits the models' behavioural realism, as they cannot adequately capture the dynamics and processes involved in the s ...
Within the scope of the implementation of a nuclear data pipeline aiming at producing the best possible evaluated nuclear data files, a major point is the production of relevant sensitivity coefficients when including integral benchmark information. Thanks ...
We propose a policy gradient algorithm for robust infinite-horizon Markov Decision Processes (MDPs) with non-rectangular uncertainty sets, thereby addressing an open challenge in the robust MDP literature. Indeed, uncertainty sets that display statistical ...
We introduce contextual stochastic bilevel optimization (CSBO) -- a stochastic bilevel optimization framework with the lower-level problem minimizing an expectation conditioned on some contextual information and the upper-level decision variable. This fram ...
It is natural for humans to judge the outcome of a decision under uncertainty as a percentage of an ex-post optimal performance. We propose a robust decision-making framework based on a relative performance index. It is shown that if the decision maker's p ...