Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Emerging 3D printing technology permits innovative approaches to manufacture cartilage scaffolds associated with layer-by-layer mechanical property adaptation. However, information about gradients of mechanical properties in human articular cartilage is limited. In this study, we quantified a zone-dependent change of local elastic modulus of human femoral condyle cartilage by using an instrumented indentation technique. From the cartilage superficial zone towards the calcified layer, a gradient of elastic modulus values between 0.020 ± 0.003 MPa and 6.44 ± 1.02 MPa was measured. To validate the tissue quality, the histological tissue composition was visualized by glycosaminoglycan and collagen staining. This work aims to introduce a new protocol to investigate the zone-dependent mechanical properties of graded structures, such as human articular cartilage. From this knowledge, better cartilage repair strategies could be tailored in the future.
Leonid Monin, Fatemeh Mohammadi, Yairon Cid Ruiz
Dominique Pioletti, Peyman Karami, Naser Nasrollahzadeh Mamaghani, Theofanis Stampoultzis, Yanheng Guo