A Conditional Gradient Framework for Composite Convex Minimization with Applications to Semidefinite Programming
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Clustering is a classic topic in optimization with k-means being one of the most fundamental such problems. In the absence of any restrictions on the input, the best-known algorithm for k-means in Euclidean space with a provable guarantee is a simple local ...
In this paper, we present a spatial branch and bound algorithm to tackle the continuous pricing problem, where demand is captured by an advanced discrete choice model (DCM). Advanced DCMs, like mixed logit or latent class models, are capable of modeling de ...
We develop new tools to study landscapes in nonconvex optimization. Given one optimization problem, we pair it with another by smoothly parametrizing the domain. This is either for practical purposes (e.g., to use smooth optimization algorithms with good g ...
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
The objective of this thesis is to develop a general methodology to incorporate a disaggregate demand representation in supply-oriented optimization problems that allows to capture the interplay between the behavior of individuals and the decisions to be o ...
Multiscale problems, such as modelling flows through porous media or predicting the mechanical properties of composite materials, are of great interest in many scientific areas. Analytical models describing these phenomena are rarely available, and one mus ...
Although different vehicle sharing systems (VSSs) use different vehicle types, the management challenges and optimization problems to be solved are similar or even the same. This observation led us to create a generalized and holistic VSS management framew ...
This study proposes a general framework for topology-finding or topology optimization of tensegrity structures. The existing topology-finding formulation of tensegrity structures based on mixed-integer linear programming (MILP) was improved and transformed ...
We propose a new self-adaptive and double-loop smoothing algorithm to solve composite, nonsmooth, and constrained convex optimization problems. Our algorithm is based on Nesterov’s smoothing technique via general Bregman distance functions. It self-adaptiv ...
Proximal splitting methods are standard tools for nonsmooth optimization. While primal-dual methods have become very popular in the last decade for their flexibility, primal methods may still be preferred for two reasons: acceleration schemes are more effe ...