Local Well-Posedness And Blow-Up For The Half Ginzburg-Landau-Kuramoto Equation With Rough Coefficients And Potential
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Families of energy operators and generalized energy operators have recently been introduced in the definition of the solutions of linear Partial Differential Equations (PDEs) with a particular application to the wave equation [ 15]. To do so, the author ha ...
This paper deals with asymptotic bifurcation, first in the abstract setting of an equation G(u) = lambda u, where G acts between real Hilbert spaces and lambda is an element of R, and then for square-integrable solutions of a second order non-linear ellipt ...
We use the averaged variational principle introduced in a recent article on graph spectra [10] to obtain upper bounds for sums of eigenvalues of several partial differential operators of interest in geometric analysis, which are analogues of Kroger's bound ...
In this paper, we investigate the limiting absorption principle associated to and the well-posedness of the Helmholtz equations with sign changing coefficients which are used to model negative index materials. Using the reflecting technique introduced in [ ...
Splines come in a variety of flavors that can be characterized in terms of some differential operator L. The simplest piecewise-constant model corresponds to the derivative operator. Likewise, one can extend the traditional notion of total variation by con ...
We study various aspects of stochastic partial differential equations driven by Lévy white noise. This driving noise, which is a generalization of Gaussian white noise, can be viewed either as a generalized random process or as an independently scattered r ...
In this paper we prove an existence result for the following singular elliptic system {z > 0 in Omega, z is an element of W-0(iota,p)(Omega) : -Delta(p)z = a(x)z(q-iota)u(theta) , u > 0 in Omega, u is an element of W-0(iota,p)(Omega) : -Delta(p)u = b(x)z(q ...
In this paper, we consider nonlinear Schrodinger equations of the following type: -Delta u(x) + V (x) u(x) -q(x)|u(x)|sigma u(x) =lambda u(x), x is an element of R-N, u is an element of H-1(R-N) \ {0}, where N >= 2 and sigma > 0. We concentrate on situatio ...
Royal Society of Edinburgh Scotland Foundation, Cambridge2013
The connection between derivative operators and wavelets is well known. Here we generalize the concept by constructing multiresolution approximations and wavelet basis functions that act like Fourier multiplier operators. This construction follows from a s ...
This paper is concerned with the eigenvalue decay of the solution to operator Lyapunov equations with right-hand sides of finite rank. We show that the kth (generalized) eigenvalue decays exponentially in root k, provided that the involved operator A gener ...