Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
This paper is concerned with the eigenvalue decay of the solution to operator Lyapunov equations with right-hand sides of finite rank. We show that the kth (generalized) eigenvalue decays exponentially in root k, provided that the involved operator A generates an exponentially stable analytic semigroup, and A is either self-adjoint or diagonalizable with its eigenvalues contained in a strip around the real axis. Numerical experiments with discretizations of 1D and 2D PDE control problems confirm this decay. (C) 2014 Elsevier B.V. All rights reserved.