Computer science and engineeringComputer science and engineering (CSE) is an academic program at many universities which comprises scientific and engineering aspects of computing. CSE is also a term often used in Europe to translate the name of engineering informatics academic programs. It is offered in both undergraduate as well postgraduate with specializations. Academic programs vary between colleges, but typically include a combination of topics in computer science, computer engineering, and electrical engineering.
NP (complexity)In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine. NP is the set of decision problems solvable in polynomial time by a nondeterministic Turing machine.
Max-flow min-cut theoremIn computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the total weight of the edges in a minimum cut, i.e., the smallest total weight of the edges which if removed would disconnect the source from the sink. This is a special case of the duality theorem for linear programs and can be used to derive Menger's theorem and the Kőnig–Egerváry theorem.
Discrete optimizationDiscrete optimization is a branch of optimization in applied mathematics and computer science. As opposed to continuous optimization, some or all of the variables used in a discrete mathematical program are restricted to be discrete variables—that is, to assume only a discrete set of values, such as the integers. Three notable branches of discrete optimization are: combinatorial optimization, which refers to problems on graphs, matroids and other discrete structures integer programming constraint programming These branches are all closely intertwined however since many combinatorial optimization problems can be modeled as integer programs (e.
Bernoulli polynomialsIn mathematics, the Bernoulli polynomials, named after Jacob Bernoulli, combine the Bernoulli numbers and binomial coefficients. They are used for series expansion of functions, and with the Euler–MacLaurin formula. These polynomials occur in the study of many special functions and, in particular, the Riemann zeta function and the Hurwitz zeta function. They are an Appell sequence (i.e. a Sheffer sequence for the ordinary derivative operator). For the Bernoulli polynomials, the number of crossings of the x-axis in the unit interval does not go up with the degree.
Karmarkar's algorithmKarmarkar's algorithm is an algorithm introduced by Narendra Karmarkar in 1984 for solving linear programming problems. It was the first reasonably efficient algorithm that solves these problems in polynomial time. The ellipsoid method is also polynomial time but proved to be inefficient in practice. Denoting as the number of variables and as the number of bits of input to the algorithm, Karmarkar's algorithm requires operations on -digit numbers, as compared to such operations for the ellipsoid algorithm.
Romanovski polynomialsIn mathematics, the Romanovski polynomials are one of three finite subsets of real orthogonal polynomials discovered by Vsevolod Romanovsky (Romanovski in French transcription) within the context of probability distribution functions in statistics. They form an orthogonal subset of a more general family of little-known Routh polynomials introduced by Edward John Routh in 1884. The term Romanovski polynomials was put forward by Raposo, with reference to the so-called 'pseudo-Jacobi polynomials in Lesky's classification scheme.
Polynomial sequenceIn mathematics, a polynomial sequence is a sequence of polynomials indexed by the nonnegative integers 0, 1, 2, 3, ..., in which each index is equal to the degree of the corresponding polynomial. Polynomial sequences are a topic of interest in enumerative combinatorics and algebraic combinatorics, as well as applied mathematics. Some polynomial sequences arise in physics and approximation theory as the solutions of certain ordinary differential equations: Laguerre polynomials Chebyshev polynomials Legendre
Perfect matchingIn graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph G = (V, E), a perfect matching in G is a subset M of edge set E, such that every vertex in the vertex set V is adjacent to exactly one edge in M. A perfect matching is also called a 1-factor; see Graph factorization for an explanation of this term. In some literature, the term complete matching is used. Every perfect matching is a maximum-cardinality matching, but the opposite is not true.
Schur polynomialIn mathematics, Schur polynomials, named after Issai Schur, are certain symmetric polynomials in n variables, indexed by partitions, that generalize the elementary symmetric polynomials and the complete homogeneous symmetric polynomials. In representation theory they are the characters of polynomial irreducible representations of the general linear groups. The Schur polynomials form a linear basis for the space of all symmetric polynomials.