Adaptive isogeometric methods with hierarchical splines: Optimality and convergence rates
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The numerical analysis of a dynamic constrained optimization problem is presented. It consists of a global minimization problem that is coupled with a system of ordinary differential equations. The activation and the deactivation of inequality constraints ...
The main goal of this paper is to propose a convergent finite volume method for a reaction–diffusion system with cross-diffusion. First, we sketch an existence proof for a class of cross-diffusion systems. Then the standard two-point finite volume fluxes a ...
The aim of this dissertation is to solve numerically the following problem, denoted by P : given a Riemannian manifold and two points a and b belonging to that manifold, find a tangent vector T at a, such that expa(T) = b, assuming that T exists. This prob ...
In this thesis we address the numerical approximation of the incompressible Navier-Stokes equations evolving in a moving domain with the spectral element method and high order time integrators. First, we present the spectral element method and the basic to ...
In this work we provide efficient numerical methods for the numerical solution of Partial Differential Equations (PDEs) and the computation of the associated outputs of interest, also in the frame of optimal control problems. With this aim, a goal-oriented ...
A numerical approach, named TransChlor, is proposed to simulate transport phenomena of various substances in concrete. This approach is a theoretical model based on finite elements and finite differences methods. The model consists of coupled nonlinear par ...
The purpose of this thesis is to investigate, from both the mathematical and numerical viewpoint, the coupling of surface and porous media flows, with particular concern on environmental applications. Domain decomposition methods are applied to set up effe ...
The cohesive element approach is getting increasingly popular for simulations in which a large amount of cracking occurs. Naturally, a robust representation of fragmentation mechanics is contingent to an accurate description of dissipative mechanisms in fo ...
In this thesis, we focus on standard classes of problems in numerical optimization: unconstrained nonlinear optimization as well as systems of nonlinear equations. More precisely, we consider two types of unconstrained nonlinear optimization problems. On t ...
This work is dedicated to research on the Selective Laser Sintering (SLS) process. The problem has been intensively investigated by many research groups. A number of physical phenomena observed in SLS are studied. There is, however, no comprehensive unders ...