Publication

Complex Refractive Indices of Cesium–Formamidinium-Based Mixed-Halide Perovskites with Optical Band Gaps from 1.5 to 1.8 eV

Abstract

Cesium-formamidinium-based mixed-halide perovskite materials with optical band gaps ranging from 1.5 to 1.8 eV are investigated by variable-angle spectroscopic ellipsometry. The determined complex refractive indices are shown to depend on the fabrication procedure and environmental conditions during processing. This data is complemented by additional optical and structural characterization, as well as the demonstration of efficient perovskite solar cells. Finally, the data is used in optical simulations to provide guidelines for the optimization of perovskite/silicon tandem solar cells.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (26)
Perovskite solar cell
A perovskite solar cell (PSC) is a type of solar cell that includes a perovskite-structured compound, most commonly a hybrid organic–inorganic lead or tin halide-based material as the light-harvesting active layer. Perovskite materials, such as methylammonium lead halides and all-inorganic cesium lead halide, are cheap to produce and simple to manufacture. Solar-cell efficiencies of laboratory-scale devices using these materials have increased from 3.8% in 2009 to 25.
Solar cell
A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical phenomenon. It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as solar panels.
Thin-film solar cell
Thin-film solar cells are made by depositing one or more thin layers (thin films or TFs) of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nm) to a few microns (μm) thick–much thinner than the wafers used in conventional crystalline silicon (c-Si) based solar cells, which can be up to 200 μm thick. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon (a-Si, TF-Si).
Show more
Related publications (35)

Photovoltaic devices containing cyclobutane-based hole transport materials

Mohammad Khaja Nazeeruddin, Yi Zhang

The teachings herein relate to hole transport compounds containing cyclobutyl moieties that can be made into organic hole conductors and hole transport materials. Furthermore, optoelectronic and photoelectrochemical devices, in particular photovoltaic devi ...
2023

High-Performance Flexible All-Perovskite Tandem Solar Cells with Reduced V-OC-Deficit in Wide-Bandgap Subcell

Quentin Thomas Jeangros, Fan Fu, Alexander Wieczorek, Jarla Thiesbrummel, Cong Chen

Among various types of perovskite-based tandem solar cells (TSCs), all-perovskite TSCs are of particular attractiveness for building- and vehicle-integrated photovoltaics, or space energy areas as they can be fabricated on flexible and lightweight substrat ...
WILEY-V C H VERLAG GMBH2022

The evolution of triphenylamine hole transport materials for efficient perovskite solar cells

Mohammad Khaja Nazeeruddin

In recent years, the dramatic increase in power conversion efficiency (PCE) coupled with a decrease in the total cost of third-generation solar cells has led to a significant increase in the collaborative research efforts of academic and industrial researc ...
ROYAL SOC CHEMISTRY2022
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.