Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.
Fatigue related problems in Francis turbines, especially high head Francis turbines, have been published several times in the last years. During operation the runner is exposed to various steady and unsteady hydraulic loads. Therefore the analysis of forced response of the runner structure requires a combined approach of fluid dynamics and structural dynamics.Due to the high complexity of the phenomena and due to the limitation of computer power, the numerical prediction was in the past too expensive and not feasible for the use as standard design tool. However, due to continuous improvement of the knowledge and the simulation tools such complex analysis has become part of the design procedure in ANDRITZ HYDRO. This article describes the application of most advanced analysis techniques in runner safety check (RSC), including steady state CFD analysis, transient CFD analysis considering rotor stator interaction (RSI), static FE analysis and modal analysis in water considering the added mass effect, in the early design phase. This procedure allows a very efficient interaction between the hydraulic designer and the mechanical designer during the design phase, such that a risk of failure can be detected and avoided in an early design stage.The RSC procedure can also be applied to a root cause analysis (RCA) both to find out the cause of failure and to quickly define a technical solution to meet the safety criteria. An efficient application to a RCA of cracks in a Francis runner is quoted in this article as an example. The results of the RCA are presented together with an efficient and inexpensive solution whose effectiveness could be proven again by applying the described RSC technics. It is shown that, with the RSC procedure developed and applied as standard procedure in ANDRITZ HYDRO such a failure is excluded in an early design phase. Moreover, the RSC procedure is compatible with different commercial and open source codes and can be easily adapted to apply for other types of turbines, such as pump turbines and Pelton runners.
François Avellan, Siamak Alimirzazadeh, Takashi Kumashiro
François Avellan, Cécile Münch-Alligné, Siamak Alimirzazadeh, Steve Crettenand
Elena Vagnoni, Alessandro Morabito