Publication

A Bayesian numerical homogenization method for elliptic multiscale inverse problems

Assyr Abdulle, Andrea Di Blasio
2020
Journal paper
Abstract

A new strategy based on numerical homogenization and Bayesian techniques for solving multiscale inverse problems is introduced. We consider a class of elliptic problems which vary at a microscopic scale, and we aim at recovering the highly oscillatory tensor from measurements of the fine scale solution at the boundary, using a coarse model based on numerical homogenization and model order reduction. We provide a rigorous Bayesian formulation of the problem, taking into account different possibilities for the choice of the prior measure. We prove well-posedness of the effective posterior measure and, by means of G-convergence, we establish a link between the effective posterior and the fine scale model. Several numerical experiments illustrate the efficiency of the proposed scheme and confirm the theoretical findings.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.