We propose to use neural networks for simultaneous detection and localization of multiple sound sources in human-robot interaction. In contrast to conventional signal processing techniques, neural network-based sound source localization methods require fewer strong assumptions about the environment. Previous neural network-based methods have been focusing on localizing a single sound source, which do not extend to multiple sources in terms of detection and localization. In this paper, we thus propose a likelihood-based encoding of the network output, which naturally allows the detection of an arbitrary number of sources. In addition, we investigate the use of sub-band cross-correlation information as features for better localization in sound mixtures, as well as three different network architectures based on different motivations. Experiments on real data recorded from a robot show that our proposed methods significantly outperform the popular spatial spectrum-based approaches.
Alexander Mathis, Alberto Silvio Chiappa, Alessandro Marin Vargas, Axel Bisi
Martin Jaggi, Vinitra Swamy, Jibril Albachir Frej, Julian Thomas Blackwell
Florent Gérard Krzakala, Lenka Zdeborová, Lucas Andry Clarte, Bruno Loureiro