Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This paper shows that exemplar-based speech processing using class-conditional posterior probabilities admits a highly effective search strategy relying on posteriors' intrinsic sparsity structures. The posterior probabilities are estimated for phonetic an ...
In the past decade, image classification systems have witnessed major advances that led to record performances on challenging datasets. However, little is known about the behavior of these classifiers when the data is subject to perturbations, such as rand ...
This paper shows that exemplar-based speech processing using class-conditional posterior probabilities admits a highly effective search strategy relying on posteriors' intrinsic sparsity structures. The posterior probabilities are estimated for phonetic an ...
We propose a method that exploits pose information in order to improve object classification. A lot of research has focused in other strategies, such as engineering feature extractors, trying different classifiers and even using transfer learning. Here, we ...
We cast the problem of query by example spoken term detection (QbE-STD) as subspace detection where query and background are modeled as a union of low-dimensional subspaces. The speech exemplars used for subspace modeling consist of class-conditional poste ...
An MLP classifier outputs a posterior probability for each class. With noisy data classification becomes less certain and the entropy of the posteriors distribution tends to increase, therefore providing a measure of classification confidence. However, at ...
A mixture of experts consists of a gating network that learns to partition the input space and of experts networks attributed to these different regions. This paper focuses on the choice of the gating network. First, a localized gating network based on a m ...
In this paper, we propose a classifier for predicting message-level sentiments of English micro-blog messages from Twitter. Our method builds upon the convolutional sentence embedding approach proposed by (Severyn and Moschitti, 2015a; Severyn and Moschitt ...
We extend the standard boosting procedure to train a two-layer classifier dedicated to handwritten char- acter recognition. The scheme we propose relies on a hidden layer which extracts feature vectors on a fixed number of points of interest, and an output ...
Linear inverse problems with discrete data are equivalent to the estimation of the continuous-time input of a linear dynamical system from samples of its output. The solution obtained by means of regularization theory has the structure of a neural network ...