Strain generation and energy-conversion mechanisms in lead-based and lead-free piezoceramics
Related publications (36)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The electrostrictive effect, which induces strain in ferroelectric ceramics, offers distinct advantages over its piezoelectric counterpart for high-precision actuator applications, including anhysteretic behavior even at high frequencies, rapid reaction ti ...
Recent advancements in miniature devices with higher computational capabilities and ultralow power consumption have accelerated the development of wearable sensors, actuators, and energy harvesters everywhere. The ultimate aim of such a technological revol ...
Lead zirconate titanate (PZT) thin films on insulator-buffered silicon substrates with interdigitated electrodes (IDEs) have the potential to harvest more energy than parallel plate electrode (PPE) structures because the former exploit the longitudinal pie ...
Dynamics of domain walls are among the main features that control strain mechanisms in ferroic materials. Here, we demonstrate that the domain-wall-controlled piezoelectric behaviour in multiferroic BiFeO3 is distinct from that reported in classical ferroe ...
A five-layer stack of lead zirconate titanate (PZT) thin films with Pt electrodes was fabricated for potential applications in nanoactuator systems. The 1 mu m thick PZT films were deposited by a sol-gel technique, the platinum electrodes by sputtering. Th ...
Wiley-Blackwell2014
, , , ,
A measurement setup for the detailed study of the transverse piezoelectric coefficient e(31,f) in the converse (actuator) mode was developed. It allows the assessment of the piezoelectric stress in thin films on silicon cantilevers and provides for a corre ...
Institute of Electrical and Electronics Engineers2015
The contribution of non-180 degrees domain wall displacement to the frequency dependence of the longitudinal piezoelectric coefficient has been determined experimentally in lead zirconate titanate using time-resolved, in situ neutron diffraction. Under sub ...
American Institute of Physics2013
, , ,
Composites in which particles of ferroelectric ceramic phase are randomly dispersed in a polymeric matrix are of interest because of flexibility, conformability, and ease of processing. However, their piezoelectric properties are rather low, unless very hi ...
2020
, , , , , ,
The use of interdigitated electrodes (IDEs) in conjunction with ferroelectric thin films shows many attractive features for piezoelectric MEMS applications. In this work, growth of {1 0 0}-textured lead zirconate titanate (PZT) thin films was achieved on i ...
Institute of Physics2015
, ,
The local application of mechanical stress in piezoelectric materials gives rise to boundaries across which the electric polarization changes. Polarization charges appear along such polar discontinuities and the ensuing electric fields drive a charge recon ...