Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The exploration of open quantum many-body systems -systems of microscopic size exhibiting quantum coherence and interacting with their surrounding- has emerged as a key research area over the last years. The recent advances in controlling and preserving qu ...
Quantum many-body dynamics generically result in increasing entanglement that eventually leads to thermalization of local observables. This makes the exact description of the dynamics complex despite the apparent simplicity of (high-temperature) thermal st ...
A leading nonlinear effect in magnonics is the interaction that splits a high-frequency magnon into two low-frequency magnons with conserved linear momentum. Here, we report experimental observation of nonlocal three-magnon scattering between spatially sep ...
With the development of quantum optics, photon correlations acquired a prominent role as a tool to test our understanding of physics, and played a key role in verifying the validity of quantum mechanics. The spatial and temporal correlations in a light fie ...
Zero knowledge plays a central role in cryptography and complexity. The seminal work of Ben-Or et al. (STOC 1988) shows that zero knowledge can be achieved unconditionally for any language in NEXP, as long as one is willing to make a suitable physical assu ...
This work demonstrates the capabilities of an entangled photon-pair source at telecom wavelengths, based on a photonic integrated Si3N4 microresonator with monolithically integrated piezoelectric frequency tuning. Previously, frequency tuning of photon pai ...
The enormous advancements in the ability to detect and manipulate single quantum states have lead to the emerging field of quantum technologies. Among these, quantum computation is the most far-reaching and challenging, aiming to solve problems that the cl ...
Single-photon light detection and ranging (LiDAR) is a key technology for depth imaging through complex environments. Despite recent advances, an open challenge is the ability to isolate the LiDAR signal from other spurious sources including background lig ...
Time-energy entangled photon pairs are fundamental resources for quantum communication protocols since they are robust against environmental fluctuations in optical fiber networks. Pair sources based on spontaneous four-wave mixing in silicon microring res ...
Quantum phenomena are typically observable at length and time scales smaller than those of our everyday experience, often involving individual particles or excitations. The past few decades have seen a revolution in the ability to structure matter at the n ...