Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We prove that Kilian's four-message succinct argument system is post-quantum secure in the standard model when instantiated with any probabilistically checkable proof and any collapsing hash function (which in turn exist based on the post-quantum hardness ...
As quantum processors grow in complexity, attention is moving to the scaling prospects of the entire quantum computing system, including the classical support hardware. Recent results in high-fidelity control of individual spins in silicon, combined with d ...
Quantum computing promises to revolutionize our lives, achieving unprecedented computational powers and unlocking new possibilities in drug discovery, chemical simulations and cryptography. The fundamental unit of computation of a quantum computer is the q ...
Programmable photonic integrated circuits are emerging as an attractive platform for applications such as quantum information processing and artificial neural networks. However, current programmable circuits are limited in scalability by the lack of low-po ...
This study presents the first in depth characterization of deep cryogenic electrical behavior of a commercial 16 nm CMOS FinFET technology. This technology is well suited for a broad range of applications, including quantum computing, quantum sensing, and ...
Quantum computing could potentially offer faster solutions for some of today's classically intractable problems using quantum processors as computational support for quantum algorithms [1]. Quantum processors, in the most frequent embodiment, comprise an a ...
Quantum phenomena are typically observable at length and time scales smaller than those of our everyday experience, often involving individual particles or excitations. The past few decades have seen a revolution in the ability to structure matter at the n ...
With the development of quantum optics, photon correlations acquired a prominent role as a tool to test our understanding of physics, and played a key role in verifying the validity of quantum mechanics. The spatial and temporal correlations in a light fie ...
Quantum computers are invaluable tools to explore the properties of complex quantum systems. We show that dynamical localization of the quantum sawtooth map, a highly sensitive quantum coherent phenomenon, can be simulated on actual, small-scale quantum pr ...
Quantum computers require classical electronics to ensure fault-tolerant operation. To address compactness and scalability, it was proposed to implement such electronics as integrated circuits operating at cryogenic temperatures close to those at which qua ...