Publication

Coordinated Optimization and Control for Smart Grids

Altug Bitlislioglu
2018
EPFL thesis
Abstract

In this thesis, we consider commercial buildings with available heating, ventilation and air conditioning (HVAC) systems, and develop methods to assess and exploit their energy storage and production potential to collectively offer ancillary services to the power grid. This demand response problem can be put in the generic framework of multi-agent optimization and control. In this setting, various agents interact through their objectives, constraints or dynamics over a network. In the example of demand response, individual buildings are connected to the power network and coupled via their common objective of providing service and the constraints of the power network. Within this generic multi-agent framework, we develop layers of abstractions that enables efficient coordination of the agents while making sure that the network constraints are satisfied, and the common goal of the agents is achieved.

The first approach is based on quantifying the tracking capability of a local system using robust optimization. Different from a standard robust optimization problem, we modify and optimize over the uncertainty set that represents the set of reference trajectories the system is required to track while rejecting external disturbances. The method facilitates hierarchical control by using reference sets for coordinating many agents.

In the second approach, we consider coordination of multiple agents by using local cost and constraint approximations. Specifically we consider decomposition of interior point methods in a multi-agent setting and analyze the computation and modeling task for the agents and the coordinator. We further consider decomposition of state of the art predictor-corrector type interior point methods and show that a naive implementation may result in excessive communication in a multi-agent setting. In order to remedy this issue, we propose a modification of the standard algorithm that uses decentralized predictions. We analyze convergence of the method and test the performance with numerical experiments.

Finally, we look into applying decomposition based interior point methods in a distributed model predictive control problem that includes dynamic coupling between the agents. Instead of solving the problem to optimality, adding barrier functions to the objective enhances numerical performance significantly, an approach that is well-known in model predictive control (MPC) literature. We consider applying this method in economic MPC problems with terminal equilibrium constraints, which is suitable for decomposition due to the simplicity of terminal constraints. However in this case standard results for MPC with barrier functions do not apply. We propose iterative re-centering of the barriers, which allows interpreting them as a regularizing cost in the problem that penalizes deviation from open-loop predictions. We show that regularizing barrier functions not only improve the numerical performance and facilitate decomposition, but also enhance system theoretical properties.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Intelligent agent
In artificial intelligence, an intelligent agent (IA) is an agent acting in an intelligent manner; It perceives its environment, takes actions autonomously in order to achieve goals, and may improve its performance with learning or acquiring knowledge. An intelligent agent may be simple or complex: A thermostat or other control system is considered an example of an intelligent agent, as is a human being, as is any system that meets the definition, such as a firm, a state, or a biome.
Software agent
In computer science, a software agent or software AI is a computer program that acts for a user or other program in a relationship of agency, which derives from the Latin agere (to do): an agreement to act on one's behalf. Such "action on behalf of" implies the authority to decide which, if any, action is appropriate. Some agents are colloquially known as bots, from robot. They may be embodied, as when execution is paired with a robot body, or as software such as a chatbot executing on a phone (e.g.
Mathematical optimization
Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.
Show more
Related publications (199)

Advanced control strategies to exploit the hydropower potential enhancing ancillary services provision to the power system

Francesco Gerini

The European Union's Green Deal aims for a 55% reduction in greenhouse gas emissions by 2030. To reach this goal, a massive integration of Renewable Energy Sources (RES) into the power grid is necessary. As RES become a large part of the electricity genera ...
EPFL2024

Stochastic pairwise preference convergence in Bayesian agents

Max-Olivier Hongler

Beliefs inform the behaviour of forward-thinking agents in complex environments. Recently, sequential Bayesian inference has emerged as a mechanism to study belief formation among agents adapting to dynamical conditions. However, we lack critical theory to ...
2024

COMMUNICATION LOWER BOUNDS AND OPTIMAL ALGORITHMS FOR MULTIPLE TENSOR-TIMES-MATRIX COMPUTATION

Laura Grigori

Multiple tensor-times-matrix (Multi-TTM) is a key computation in algorithms for computing and operating with the Tucker tensor decomposition, which is frequently used in multidimensional data analysis. We establish communication lower bounds that determine ...
Philadelphia2024
Show more
Related MOOCs (32)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Intro to Traffic Flow Modeling and Intelligent Transport Systems
Learn how to describe, model and control urban traffic congestion in simple ways and gain insight into advanced traffic management schemes that improve mobility in cities and highways.
Intro to Traffic Flow Modeling and Intelligent Transport Systems
Learn how to describe, model and control urban traffic congestion in simple ways and gain insight into advanced traffic management schemes that improve mobility in cities and highways.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.