X86x86 (also known as 80x86 or the 8086 family) is a family of complex instruction set computer (CISC) instruction set architectures initially developed by Intel based on the Intel 8086 microprocessor and its 8088 variant. The 8086 was introduced in 1978 as a fully 16-bit extension of Intel's 8-bit 8080 microprocessor, with memory segmentation as a solution for addressing more memory than can be covered by a plain 16-bit address.
Out-of-order executionIn computer engineering, out-of-order execution (or more formally dynamic execution) is a paradigm used in most high-performance central processing units to make use of instruction cycles that would otherwise be wasted. In this paradigm, a processor executes instructions in an order governed by the availability of input data and execution units, rather than by their original order in a program. In doing so, the processor can avoid being idle while waiting for the preceding instruction to complete and can, in the meantime, process the next instructions that are able to run immediately and independently.
Windows 95Windows 95 is a consumer-oriented operating system developed by Microsoft as part of its Windows 9x family of operating systems. The first operating system in the 9x family, it is the successor to Windows 3.1x, and was released to manufacturing on July 14, 1995, and generally to retail on August 24, 1995, almost three months after the release of Windows NT 3.51. Windows 95 is the first version of Microsoft Windows to include taskbar, start button, and accessing the internet.
Meltdown (security vulnerability)Meltdown is one of the two original transient execution CPU vulnerabilities (the other being Spectre). Meltdown affects Intel x86 microprocessors, IBM POWER processors, and some ARM-based microprocessors. It allows a rogue process to read all memory, even when it is not authorized to do so. Meltdown affects a wide range of systems. At the time of disclosure (2018), this included all devices running any but the most recent and patched versions of iOS, Linux, macOS, or Windows.
Cache prefetchingCache prefetching is a technique used by computer processors to boost execution performance by fetching instructions or data from their original storage in slower memory to a faster local memory before it is actually needed (hence the term 'prefetch'). Most modern computer processors have fast and local cache memory in which prefetched data is held until it is required. The source for the prefetch operation is usually main memory.
Cache control instructionIn computing, a cache control instruction is a hint embedded in the instruction stream of a processor intended to improve the performance of hardware caches, using foreknowledge of the memory access pattern supplied by the programmer or compiler. They may reduce cache pollution, reduce bandwidth requirement, bypass latencies, by providing better control over the working set. Most cache control instructions do not affect the semantics of a program, although some can.
Raw dataRaw data, also known as primary data, are data (e.g., numbers, instrument readings, figures, etc.) collected from a source. In the context of examinations, the raw data might be described as a raw score (after test scores). If a scientist sets up a computerized thermometer which records the temperature of a chemical mixture in a test tube every minute, the list of temperature readings for every minute, as printed out on a spreadsheet or viewed on a computer screen are "raw data".
Computer memoryComputer memory stores information, such as data and programs for immediate use in the computer. The term memory is often synonymous with the term primary storage or main memory. An archaic synonym for memory is store. Computer memory operates at a high speed compared to storage which is slower but less expensive and higher in capacity. Besides storing opened programs, computer memory serves as disk cache and write buffer to improve both reading and writing performance.
Page cacheIn computing, a page cache, sometimes also called disk cache, is a transparent cache for the pages originating from a secondary storage device such as a hard disk drive (HDD) or a solid-state drive (SSD). The operating system keeps a page cache in otherwise unused portions of the main memory (RAM), resulting in quicker access to the contents of cached pages and overall performance improvements. A page cache is implemented in kernels with the paging memory management, and is mostly transparent to applications.
Memory managementMemory management is a form of resource management applied to computer memory. The essential requirement of memory management is to provide ways to dynamically allocate portions of memory to programs at their request, and free it for reuse when no longer needed. This is critical to any advanced computer system where more than a single process might be underway at any time. Several methods have been devised that increase the effectiveness of memory management.