Computer memory stores information, such as data and programs for immediate use in the computer. The term memory is often synonymous with the term primary storage or main memory. An archaic synonym for memory is store.
Computer memory operates at a high speed compared to storage which is slower but less expensive and higher in capacity. Besides storing opened programs, computer memory serves as disk cache and write buffer to improve both reading and writing performance. Operating systems borrow RAM capacity for caching so long as not needed by running software. If needed, contents of the computer memory can be transferred to storage; a common way of doing this is through a memory management technique called virtual memory.
Modern computer memory is implemented as semiconductor memory, where data is stored within memory cells built from MOS transistors and other components on an integrated circuit. There are two main kinds of semiconductor memory: volatile and non-volatile. Examples of non-volatile memory are flash memory and ROM, PROM, EPROM and EEPROM memory. Examples of volatile memory are dynamic random-access memory (DRAM) used for primary storage, and static random-access memory (SRAM) used for CPU cache.
Most semiconductor memory is organized into memory cells each storing one bit (0 or 1). Flash memory organization includes both one bit per memory cell and multi-level cell capable of storing multiple bits per cell. The memory cells are grouped into words of fixed word length, for example, 1, 2, 4, 8, 16, 32, 64 or 128 bits. Each word can be accessed by a binary address of N bits, making it possible to store 2N words in the memory.
In the early 1940s, memory technology often permitted a capacity of a few bytes. The first electronic programmable digital computer, the ENIAC, using thousands of vacuum tubes, could perform simple calculations involving 20 numbers of ten decimal digits stored in the vacuum tubes.
The next significant advance in computer memory came with acoustic delay-line memory, developed by J.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of miniaturized transistors and other electronic components are integrated together on the chip. This results in circuits that are orders of magnitude smaller, faster, and less expensive than those constructed of discrete components, allowing a large transistor count.
A computer is a machine that can be programmed to carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as programs. These programs enable computers to perform a wide range of tasks. A computer system is a nominally complete computer that includes the hardware, operating system (main software), and peripheral equipment needed and used for full operation.
Intel Corporation (commonly known as Intel) is an American multinational corporation and technology company headquartered in Santa Clara, California. It is one of the world's largest semiconductor chip manufacturer by revenue, and is one of the developers of the x86 series of instruction sets found in most personal computers (PCs). Incorporated in Delaware, Intel ranked No. 45 in the 2020 Fortune 500 list of the largest United States corporations by total revenue for nearly a decade, from 2007 to 2016 fiscal years.
To efficiently program embedded systems an understanding of their architectures is required. After following this course students will be able to take an existing SoC, understand its architecture, and
Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
In the past decades, a significant increase of the transistor density on a chip has led to exponential growth in computational power driven by Moore's law. To overcome the bottleneck of traditional von-Neumann architecture in computational efficiency, effo ...
EPFL2024
, , , , , , ,
Memory devices have returned to the spotlight due to increasing interest in using in-memory computing architectures to make data-driven algorithms more energy-efficient. One of the main advantages of this architecture is the efficient performance of vector ...
2023
, , , ,
By supporting the access of multiple memory words at the same time, Bit-line Computing (BC) architectures allow the parallel execution of bit-wise operations in-memory. At the array periphery, arithmetic operations are then derived with little additional o ...