Publication

The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study

Athanasios Nenes
2013
Journal paper
Abstract

The California Research at the Nexus of Air Quality and Climate Change (CalNex) field study was conducted throughout California in May, June, and July of 2010. The study was organized to address issues simultaneously relevant to atmospheric pollution and climate change, including (1) emission inventory assessment, (2) atmospheric transport and dispersion, (3) atmospheric chemical processing, and (4) cloud-aerosol interactions and aerosol radiative effects. Measurements from networks of ground sites, a research ship, tall towers, balloon-borne ozonesondes, multiple aircraft, and satellites provided in situ and remotely sensed data on trace pollutant and greenhouse gas concentrations, aerosol chemical composition and microphysical properties, cloud microphysics, and meteorological parameters. This overview report provides operational information for the variety of sites, platforms, and measurements, their joint deployment strategy, and summarizes findings that have resulted from the collaborative analyses of the CalNex field study. Climate-relevant findings from CalNex include that leakage from natural gas infrastructure may account for the excess of observed methane over emission estimates in Los Angeles. Air-quality relevant findings include the following: mobile fleet VOC significantly declines, and NOx emissions continue to have an impact on ozone in the Los Angeles basin; the relative contributions of diesel and gasoline emission to secondary organic aerosol are not fully understood; and nighttime NO3 chemistry contributes significantly to secondary organic aerosol mass in the San Joaquin Valley. Findings simultaneously relevant to climate and air quality include the following: marine vessel emissions changes due to fuel sulfur and speed controls result in a net warming effect but have substantial positive impacts on local air quality. © 2013. American Geophysical Union. All Rights Reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (37)
Greenhouse gas emissions
Greenhouse gas emissions (abbreviated as GHG emissions) from human activities strengthen the greenhouse effect, contributing to climate change. Carbon dioxide (), from burning fossil fuels such as coal, oil, and natural gas, is one of the most important factors in causing climate change. The largest emitters are China followed by the US, although the United States has higher emissions per capita. The main producers fueling the emissions globally are large oil and gas companies.
Air pollution
Air pollution is the contamination of air due to the presence of substances in the atmosphere that are harmful to the health of humans and other living beings, or cause damage to the climate or to materials. It is also the contamination of indoor or outdoor surrounding either by chemical activities, physical or biological agents that alters the natural features of the atmosphere. There are many different types of air pollutants, such as gases (including ammonia, carbon monoxide, sulfur dioxide, nitrous oxides, methane and chlorofluorocarbons), particulates (both organic and inorganic), and biological molecules.
Methane emissions
Increasing methane emissions are a major contributor to the rising concentration of greenhouse gases in Earth's atmosphere, and are responsible for up to one-third of near-term global heating. During 2019, about 60% (360 million tons) of methane released globally was from human activities, while natural sources contributed about 40% (230 million tons). Reducing methane emissions by capturing and utilizing the gas can produce simultaneous environmental and economic benefits.
Show more
Related publications (148)

Impact of anthropogenic emission control in reducing future PM2.5 concentrations and the related oxidative potential across different regions of China

Athanasios Nenes, Yuan Yuan

Affected by both future anthropogenic emissions and climate change, future prediction of PM2.5 and its Oxidative Potential (OP) distribution is a significant challenge, especially in developing countries like China. To overcome this challenge, we estimated ...
Elsevier2024

Spatio-temporal patterns and drivers of CH4 and CO2 fluxes from rivers and lakes in highly urbanized areas

Alexandre Buttler

Gaseous carbon exchange at the water-air interface of rivers and lakes is an essential process for regional and global carbon cycle assessments. Many studies have shown that rivers surrounding urban landscapes can be hotspots for greenhouse gas (GHG) emiss ...
Amsterdam2024

Quantifying functional group compositions of household fuel-burning emissions

Satoshi Takahama, Amir Yazdani

Globally, billions of people burn fuels indoors for cooking and heating, which contributes to millions of chronic illnesses and premature deaths annually. Additionally, residential burning contributes significantly to black carbon emissions, which have the ...
Copernicus Gesellschaft Mbh2024
Show more
Related MOOCs (4)
Analyse du cycle de vie environmental
MOOC introduction à la pensée du cycle de vie et aux concepts théoriques pour réaliser et critiquer une analyse du cycle de vie.
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.