Publication

Cloud formation in the plumes of solar chimney power generation facilities: A modeling study

Athanasios Nenes
2009
Journal paper
Abstract

The solar chimney power facility has the potential to become a valuable technology for renewable energy production. Its financial viability depends on a thorough understanding of the processes affecting its performance, particularly because of the large startup costs associated with facility design and construction. This paper describes the potential impacts on plant capacity resulting from cloud formation within or downwind of the solar chimney. Several proposed modifications to the basic concept of the solar chimney power facility have the potential to cause significant additions of water vapor to the air passing through the collector. As the air continues up through and out of the chimney, this excess water can condense to form cloud. This possibility is explored using a cloud parcel model initialized to simulate the range of expected operating conditions for a proposed solar chimney facility in southwestern Australia. A range of temperatures and updraft velocities is simulated for each of four seasonal representations and three levels of water vapor enhancement. Both adiabatic environments and the effects of entrainment are considered. The results indicate that for very high levels of water vapor, enhancement cloud formation within the chimney is likely; at more moderate levels of water vapor enhancement, the likelihood of plume formation is difficult to fully assess as the results depend strongly on the choice of entrainment rate. Finally, the impacts of these outcomes on facility capacity are estimated. Copyright © 2009 by ASME.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Renewable energy
Renewable energy is energy from renewable resources that are naturally replenished on a human timescale. Renewable resources include sunlight, wind, the movement of water, and geothermal heat. Although most renewable energy sources are sustainable, some are not. For example, some biomass sources are considered unsustainable at current rates of exploitation. Renewable energy is often used for electricity generation, heating and cooling.
Cloud
In meteorology, a cloud is an aerosol consisting of a visible mass of miniature liquid droplets, frozen crystals, or other particles suspended in the atmosphere of a planetary body or similar space. Water or various other chemicals may compose the droplets and crystals. On Earth, clouds are formed as a result of saturation of the air when it is cooled to its dew point, or when it gains sufficient moisture (usually in the form of water vapor) from an adjacent source to raise the dew point to the ambient temperature.
Renewable energy commercialization
Renewable energy commercialization involves the deployment of three generations of renewable energy technologies dating back more than 100 years. First-generation technologies, which are already mature and economically competitive, include biomass, hydroelectricity, geothermal power and heat. Second-generation technologies are market-ready and are being deployed at the present time; they include solar heating, photovoltaics, wind power, solar thermal power stations, and modern forms of bioenergy.
Show more
Related publications (35)

Highly Hygroscopic Aerosols Facilitate Summer and Early‐Autumn Cloud Formation at Extremely Low Concentrations Over the Central Arctic Ocean

Julia Schmale, Andrea Baccarini

Arctic clouds are sensitive to atmospheric particles since these are sometimes in such low concentrations that clouds cannot always form under supersaturated water vapor conditions. This is especially true in the late summer, when aerosol concentrations ar ...
2024

A Case Study on Drivers of the Isotopic Composition of Water Vapor at the Coast of East Antarctica

Michael Lehning, Armin Sigmund, Riqo Chaar

Stable water isotopes (SWIs) contain valuable information on the past climate and phase changes in the hydrologic cycle. Recently, vapor measurements in the polar regions have provided new insights into the effects of snow-related and atmospheric processes ...
AMER GEOPHYSICAL UNION2023

Aerosol and dynamical contributions to cloud droplet formation in Arctic low-level clouds

Athanasios Nenes, Ghislain Gilles Jean-Michel Motos, Paraskevi Georgakaki, Jörg Wieder, Guangyu Li

The Arctic is one of the most rapidly warming regions of the globe. Low-level clouds and fog modify the energy transfer from and to space and play a key role in the observed strong Arctic surface warming, a phenomenon commonly termed "Arctic amplification" ...
Gottingen2023
Show more
Related MOOCs (2)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.