Publication

Brain-controlled modulation of spinal circuits improves recovery from spinal cord injury

Abstract

The delivery of brain-controlled neuromodulation therapies during motor rehabilitation may augment recovery from neurological disorders. To test this hypothesis, we conceived a brain-controlled neuromodulation therapy that combines the technical and practical features necessary to be deployed daily during gait rehabilitation. Rats received a severe spinal cord contusion that led to leg paralysis. We engineered a proportional brain–spine interface whereby cortical ensemble activity constantly determines the amplitude of spinal cord stimulation protocols promoting leg flexion during swing. After minimal calibration time and without prior training, this neural bypass enables paralyzed rats to walk overground and adjust foot clearance in order to climb a staircase. Compared to continuous spinal cord stimulation, brain-controlled stimulation accelerates and enhances the long-term recovery of locomotion. These results demonstrate the relevance of brain-controlled neuromodulation therapies to augment recovery from motor disorders, establishing important proofs-of-concept that warrant clinical studies

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Spinal cord injury
A spinal cord injury (SCI) is damage to the spinal cord that causes temporary or permanent changes in its function. Symptoms may include loss of muscle function, sensation, or autonomic function in the parts of the body served by the spinal cord below the level of the injury. Injury can occur at any level of the spinal cord and can be complete, with a total loss of sensation and muscle function at lower sacral segments, or incomplete, meaning some nervous signals are able to travel past the injured area of the cord up to the Sacral S4-5 spinal cord segments.
Spinal cord injury research
Spinal cord injury research seeks new ways to cure or treat spinal cord injury in order to lessen the debilitating effects of the injury in the short or long term. There is no cure for SCI, and current treatments are mostly focused on spinal cord injury rehabilitation and management of the secondary effects of the condition. Two major areas of research include neuroprotection, ways to prevent damage to cells caused by biological processes that take place in the body after the injury, and neuroregeneration, regrowing or replacing damaged neural circuits.
Neurostimulation
Neurostimulation is the purposeful modulation of the nervous system's activity using invasive (e.g. microelectrodes) or non-invasive means (e.g. transcranial magnetic stimulation or transcranial electric stimulation, tES, such as tDCS or transcranial alternating current stimulation, tACS). Neurostimulation usually refers to the electromagnetic approaches to neuromodulation.
Show more
Related publications (38)

Neuromodulation/neurostimulation system for mitigating locomotor deficits of parkinson's disease, spinal cord injury (sci), stroke and/or other neurological disorders

Grégoire Courtine, Jocelyne Bloch, Eduardo Martin Moraud, Jordan Squair, Léonie Asboth, Tomislav Milekovic, Robin Jonathan Demesmaeker

The present invention relates to a combined neuromodulation and/or neurostimulation system (10) for mitigating locomotor deficits of/or neuronal disorders, especially Parkinson's disease, said system (10) comprising: - at least one Deep Brain Stimulation ( ...
2023

Brain-controlled spinal cord stimulation to restore mobility after spinal cord injury.

Carmina Andrea Galvez Solano

Spinal Cord Injury (SCI) affects almost 500,000 people every year, causing complete paralysis of both legs in severe cases, with no current treatment perspective. However, new neuroengineering technologies, such as the Brain Spine Interface (BSI), have eme ...
EPFL2023

Walking naturally after spinal cord injury using a brain-spine interface

Grégoire Courtine, Jocelyne Bloch, Léonie Asboth, Robin Jonathan Demesmaeker, Anne Marie Lucienne Watrin, Sergio Daniel Hernandez, Henri Charles Alexandre Lorach, Jimmy James Ravier, Grégory Didier Dumont, Félix Antoine Martel, Laure Coquoz, Valeria Spagnolo, Thibault Jean Etienne Collin, Icare Sakr, Lucas Struber, Salif Axel Komi, Molywan Vat, Carmina Andrea Galvez Solano, Edeny Baaklini, Cathal John Harte

A spinal cord injury interrupts the communication between the brain and the region of the spinal cord that produces walking, leading to paralysis(1,2). Here, we restored this communication with a digital bridge between the brain and spinal cord that enable ...
NATURE PORTFOLIO2023
Show more
Related MOOCs (6)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Selected chapters form winterschool on multi-scale brain
Understanding the brain requires an integrated understan­ding of different scales of organisation of the brain. This Massive Open Online Course (MOOC) will take the you through the latest data, models
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.