Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The design of hydropower is determined by estimates and long-term forecasts. These forecasts and estimates are highly uncertain and make performance evaluation and design choices challenging. Effective values deviating from the estimates can have a significant impact on the success of a hydropower project. Furthermore, if ongoing research should improve the accuracy of these long-term forecasts, such as climate change projections and electricity price forecasts, a high uncertainty will remain and finally lead to a demand for adequate design methods that incorporate these uncertainties into the planning process. Various design methods have been developed which allow for management of uncertainties. The Information-Gap Decision Theory (IGDT) was suggested as a potential approach to deal with climate change uncertainties. In this study, the IGDT was formulated and applied first time to a real hydropower project. Beside the identification of the values and limitations of IGDT specifically for hydropower sector, the study is intended to provide a basis for the application of the method in the engineering practice.
Dario Floreano, Valentin Wüest, Fabio Bergonti
, , ,