Although conceptually simple, the air-water interface displays rich behavior and is subject to intense experimental and theoretical investigations. Different definitions of the electrostatic surface potential as well as different calculation methods, each ...
Thermally stimulated current (TSC) is a widely used technique to assess trap states and extract their density, energy, and capture rate using analytical expressions. In many cases, the latter are derived from physical models pertaining to inorganic semicon ...
In this paper the loaded polymer transport and its escape via a nanometer size aperture, virtually by nanomembrane, the polymer being moved by an exterior electrostatic field, has been studied. Assuming a linear dependency of the friction coefficient on th ...
In this paper, we introduce a new class of potential fields, i.e., meta navigation functions (MNFs) to coordinate multi-agent systems. Thanks to the MNF formulation, agents can contribute to each other's coordination via partial and/or total associations, ...
Thermally driven flows in fractures play a key role in enhancing the heat transfer and fluid mixing across the Earth’s lithosphere. Yet the energy pathways in such confined environments have not been characterised. Building on Letelier et al. (J. Fluid Mec ...
Molecular simulations allow to investigate the behaviour of materials at the atomistic level, shedding light on phenomena that cannot be directly observed in experiments. Accurate results can be obtained with ab initio methods, while simulations of large-s ...
Applying hydrostatic pressure with suspended 2D material thin membranes allows probing the effects of lateral strain on the ion and fluid transport through nanopores. We demonstrate how both permanent and temporary delamination of 2D materials can be induc ...
Classical models of aerial swarms often describe global coordinated motion as the combination of local interactions that happen at the individual level. Mathematically, these interactions are represented with potential fields. Despite their explanatory suc ...
Second harmonic generation microscopy is used to image interfaces or non-centrosymmetric structures and molecules. Two-photon fluorescence microscopy can image molecules within cells without using markers. Thus those technics have lead to advances in our u ...
Lattice dynamics in low-dimensional materials and, in particular, the quadratic behaviour of the flexural acoustic modes play a fundamental role in their thermomechanical properties. A first-principles evaluation of these can be very demanding, and can be ...