Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We compute bounds on end-to-end worst-case latency and on nodal backlog size for a per-class deterministic network that implements Credit Based Shaper (CBS) and Asynchronous Traffic Shaping (ATS), as proposed by the Time-Sensitive Networking (TSN) standardization group. ATS is an implementation of the Interleaved Regulator, which reshapes traffic in the network before admitting it into a CBS buffer, thus avoiding burstiness cascades. Due to the interleaved regulator, traffic is reshaped at every switch, which allows for the computation of explicit delay and backlog bounds. Furthermore, we obtain a novel, tight per-flow bound for the response time of CBS, when the input is regulated, which is smaller than existing network calculus bounds. We also compute a per-flow bound on the response time of the interleaved regulator. Based on all the above results, we compute bounds on the per-class backlogs. Then, we use the newly computed delay bounds along with recent results on interleaved regulators from literature to derive tight end-to-end latency bounds and show that these are less than the sums of per-switch delay bounds.
Christophe Ballif, Jonathan Emanuel Thomet, Janina Christine Isabelle Löffler, Samira Alexandra Frey
Jean-Yves Le Boudec, Ehsan Mohammadpour