**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Stochastic Forward Douglas-Rachford Splitting Method for Monotone Inclusions

Abstract

We propose a stochastic Forward-Douglas-Rachford Splitting framework for finding a zero point of the sum of three maximally monotone operators, one of which is cocoercive, in a real separable Hilbert space. We characterize the rate of convergence in expectation for strongly monotone operators. We further provide guidance on step-size sequence selection that achieve this rate, even when the strong convexity parameter is unknown.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (19)

Related MOOCs (9)

Related publications (18)

Monotonic function

In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order theory. In calculus, a function defined on a subset of the real numbers with real values is called monotonic if and only if it is either entirely non-increasing, or entirely non-decreasing. That is, as per Fig. 1, a function that increases monotonically does not exclusively have to increase, it simply must not decrease.

Hilbert space

In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.

Galois connection

In mathematics, especially in order theory, a Galois connection is a particular correspondence (typically) between two partially ordered sets (posets). Galois connections find applications in various mathematical theories. They generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields, discovered by the French mathematician Évariste Galois. A Galois connection can also be defined on preordered sets or classes; this article presents the common case of posets.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Volkan Cevher, Ahmet Alacaoglu

We propose a variance reduced algorithm for solving monotone variational inequalities. Without assuming strong monotonicity, cocoercivity, or boundedness of the domain, we prove almost sure convergence of the iterates generated by the algorithm to a soluti ...

2021,

We characterize the solution of a broad class of convex optimization problems that address the reconstruction of a function from a finite number of linear measurements. The underlying hypothesis is that the solution is decomposable as a finite sum of compo ...

2021,

In this paper, we propose a novel splitting method for finding a zero point of the sum of two monotone operators where one of them is Lipschizian. The weak convergence the method is proved in real Hilbert spaces. Applying the proposed method to composite m ...

2020