Publication

DermoNet: Densely Linked Convolutional Neural Network for Efficient Skin Lesion Segmentation

Abstract

Recent state-of-the-art methods for skin lesion segmentation are based on Convolutional Neural Networks (CNNs). Even though these CNN based segmentation approaches are accurate, they are computationally expensive. In this paper, we address this problem and propose an efficient fully Convolutional Neural Network, named DermoNet. In DermoNet, due to our densely connected convolutional blocks and skip connections, network layers can reuse information from their preceding layers and ensure high accuracy in later network layers. By doing so, we take advantage of the capability of high-level feature representations learned at intermediate layers with varying scales and resolutions for lesion segmentation. Quantitative evaluation is conducted on three well-established public benchmark datasets: the ISBI 2016, ISBI 2017, and the PH2 datasets. The experimental results show that our proposed approach outperforms state-of-the-art algorithms on these three datasets. We also compared the runtime performance of DermoNet with two other related architectures, which are FCN and U-Net. The proposed approach is found to be faster and suitable for practical applications.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.