Exponential distributionIn probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.
Long tailIn statistics and business, a long tail of some distributions of numbers is the portion of the distribution having many occurrences far from the "head" or central part of the distribution. The distribution could involve popularities, random numbers of occurrences of events with various probabilities, etc. The term is often used loosely, with no definition or an arbitrary definition, but precise definitions are possible. In statistics, the term long-tailed distribution has a narrow technical meaning, and is a subtype of heavy-tailed distribution.
Q–Q plotIn statistics, a Q–Q plot (quantile-quantile plot) is a probability plot, a graphical method for comparing two probability distributions by plotting their quantiles against each other. A point (x, y) on the plot corresponds to one of the quantiles of the second distribution (y-coordinate) plotted against the same quantile of the first distribution (x-coordinate). This defines a parametric curve where the parameter is the index of the quantile interval.
Aggregate dataAggregate data is high-level data which is acquired by combining individual-level data. For instance, the output of an industry is an aggregate of the firms’ individual outputs within that industry. Aggregate data are applied in statistics, data warehouses, and in economics. There is a distinction between aggregate data and individual data. Aggregate data refers to individual data that are averaged by geographic area, by year, by service agency, or by other means.
Applications of randomnessRandomness has many uses in science, art, statistics, cryptography, gaming, gambling, and other fields. For example, random assignment in randomized controlled trials helps scientists to test hypotheses, and random numbers or pseudorandom numbers help video games such as video poker. These uses have different levels of requirements, which leads to the use of different methods. Mathematically, there are distinctions between randomization, pseudorandomization, and quasirandomization, as well as between random number generators and pseudorandom number generators.
Continuous stochastic processIn probability theory, a continuous stochastic process is a type of stochastic process that may be said to be "continuous" as a function of its "time" or index parameter. Continuity is a nice property for (the sample paths of) a process to have, since it implies that they are well-behaved in some sense, and, therefore, much easier to analyze. It is implicit here that the index of the stochastic process is a continuous variable.
Estimation (project management)In project management (e.g., for engineering), accurate estimates are the basis of sound project planning. Many processes have been developed to aid engineers in making accurate estimates, such as Analogy based estimation Compartmentalization (i.e., breakdown of tasks) Cost estimate Delphi method Documenting estimation results Educated assumptions Estimating each task Examining historical data Identifying dependencies Parametric estimating Risk assessment Structured planning Popular estimation processes fo