**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Learning of robust spectral graph dictionaries for distributed processing

Abstract

We consider the problem of distributed representation of signals in sensor networks, where sensors exchange quantized information with their neighbors. The signals of interest are assumed to have a sparse representation with spectral graph dictionaries. We further model the spectral dictionaries as polynomials of the graph Laplacian operator. We first study the impact of the quantization noise in the distributed computation of matrix-vector multiplications, such as the forward and the adjoint operator, which are used in many classical signal processing tasks. It occurs that the performance is clearly penalized by the quantization noise, whose impact directly depends on the structure of the spectral graph dictionary. Next, we focus on the problem of sparse signal representation and propose an algorithm to learn polynomial graph dictionaries that are both adapted to the graph signals of interest and robust to quantization noise. Simulation results show that the learned dictionaries are efficient in processing graph signals in sensor networks where bandwidth constraints impose quantization of the messages exchanged in the network.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (55)

Related MOOCs (19)

Related concepts (33)

Digital Signal Processing I

Basic signal processing concepts, Fourier analysis and filters. This module can
be used as a starting point or a basic refresher in elementary DSP

Digital Signal Processing II

Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization

Digital Signal Processing III

Advanced topics: this module covers real-time audio processing (with
examples on a hardware board), image processing and communication system design.

Sparse dictionary learning

Sparse dictionary learning (also known as sparse coding or SDL) is a representation learning method which aims at finding a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms and they compose a dictionary. Atoms in the dictionary are not required to be orthogonal, and they may be an over-complete spanning set. This problem setup also allows the dimensionality of the signals being represented to be higher than the one of the signals being observed.

Sparse approximation

Sparse approximation (also known as sparse representation) theory deals with sparse solutions for systems of linear equations. Techniques for finding these solutions and exploiting them in applications have found wide use in , signal processing, machine learning, medical imaging, and more. Consider a linear system of equations , where is an underdetermined matrix and . The matrix (typically assumed to be full-rank) is referred to as the dictionary, and is a signal of interest.

Matrix multiplication

In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB.

Compressed sensing is provided a data-acquisition paradigm for sparse signals. Remarkably, it has been shown that the practical algorithms provide robust recovery from noisy linear measurements acquired at a near optimal sampling rate. In many real-world a ...

Fast and accurate transmission line outage detection can help the central control unit to respond rapidly to better maintain the security and reliability of power systems. It is especially critical in the situation of multiple line outages which is more li ...

Nicolas Macris, Jean François Emmanuel Barbier, Chun Lam Chan

A new adaptive path interpolation method has been recently developed as a simple and versatile scheme to calculate exactly the asymptotic mutual information of Bayesian inference problems defined on dense factor graphs. These include random linear and gene ...