Geometric algebraIn mathematics, a geometric algebra (also known as a real Clifford algebra) is an extension of elementary algebra to work with geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric product. Multiplication of vectors results in higher-dimensional objects called multivectors. Compared to other formalisms for manipulating geometric objects, geometric algebra is noteworthy for supporting vector division and addition of objects of different dimensions.
RenormalizationRenormalization is a collection of techniques in quantum field theory, statistical field theory, and the theory of self-similar geometric structures, that are used to treat infinities arising in calculated quantities by altering values of these quantities to compensate for effects of their self-interactions. But even if no infinities arose in loop diagrams in quantum field theory, it could be shown that it would be necessary to renormalize the mass and fields appearing in the original Lagrangian.
Bootstrap modelThe term "bootstrap model" is used for a class of theories that use very general consistency criteria to determine the form of a quantum theory from some assumptions on the spectrum of particles. It is a form of S-matrix theory. In the 1960s and '70s, the ever-growing list of strongly interacting particles — mesons and baryons — made it clear to physicists that none of these particles is elementary.
Unitarity (physics)In quantum physics, unitarity is (or a unitary process has) the condition that the time evolution of a quantum state according to the Schrödinger equation is mathematically represented by a unitary operator. This is typically taken as an axiom or basic postulate of quantum mechanics, while generalizations of or departures from unitarity are part of speculations about theories that may go beyond quantum mechanics. A unitarity bound is any inequality that follows from the unitarity of the evolution operator, i.
Spacetime algebraIn mathematical physics, spacetime algebra (STA) is a name for the Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4). According to David Hestenes, spacetime algebra can be particularly closely associated with the geometry of special relativity and relativistic spacetime. It is a vector space that allows not only vectors, but also bivectors (directed quantities associated with particular planes, such as areas, or rotations) or blades (quantities associated with particular hyper-volumes) to be combined, as well as rotated, reflected, or Lorentz boosted.
S-matrix theoryS-matrix theory was a proposal for replacing local quantum field theory as the basic principle of elementary particle physics. It avoided the notion of space and time by replacing it with abstract mathematical properties of the S-matrix. In S-matrix theory, the S-matrix relates the infinite past to the infinite future in one step, without being decomposable into intermediate steps corresponding to time-slices. This program was very influential in the 1960s, because it was a plausible substitute for quantum field theory, which was plagued with the zero interaction phenomenon at strong coupling.
Bekenstein boundIn physics, the Bekenstein bound (named after Jacob Bekenstein) is an upper limit on the thermodynamic entropy S, or Shannon entropy H, that can be contained within a given finite region of space which has a finite amount of energy—or conversely, the maximal amount of information required to perfectly describe a given physical system down to the quantum level. It implies that the information of a physical system, or the information necessary to perfectly describe that system, must be finite if the region of space and the energy are finite.