Gram-type differentiation of bacteria with 2D hollow photonic crystal cavities
Related publications (50)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Analysis of genetic and functional variability in populations of living cells requires experimental techniques capable of monitoring cellular processes such as cell signaling of many single cells in parallel while offering the possibility to sort interesti ...
Bacteria forage by moving towards nutrient sources in a process known as chemotaxis. The bacteria follow gradient variations by tumbling or moving in straight lines. Both modes of locomotion are affected by Brownian motion. Bacteria are also capable of int ...
The application of electrical fields within a microfluidic channel enables many forms of manipulation necessary for lab-on-a-chip devices. Patterning electrodes inside the microfluidic channel generally requires multi-step optical lithography. Here, we uti ...
This paper presents a systematic analysis of the motion of microscale structures actuated by flagellated bacteria. We perform the study both experimentally and theoretically. We use a blotting procedure to attach flagellated bacteria to a buoyancy-neutral ...
To locate a high-dose point hexachlorocyclohexane (HCH)-contaminated site, to identify HCH-degrading bacteria in it and assay HCH-decontamination by biostimulation. Methods and Results: Bacteria were isolated by serial dilution method from HCH-contaminate ...
Plasmonic dipole antennas are powerful optical devices for many applications since they combine a high field enhancement with outstanding tunability of their resonance frequency. The field enhancement, which is mainly localized inside the nanogap between b ...
Spie-Int Soc Optical Engineering, Po Box 10, Bellingham, Wa 98227-0010 Usa2011
We propose surface plasmon polariton driven plasmonic monopole antenna array system for biosensing, nanospectroscopy and optical trapping. The structure exhibits high refractive index sensitivities, nearfield resolution and optical gradient force. ...
We study the integration of plasmonic traps with microfluidic channels. Plasmonic traps are optical traps that use the evanescent field generated by metallic nanostructures at their plasmon resonance to trap small objects. Contrary to conventional - far-fi ...
Spie-Int Soc Optical Engineering, Po Box 10, Bellingham, Wa 98227-0010 Usa2008
Optically controlled fluidic valves are utilized to concentrate and detect bacteria, selectively switch the pathway of the bacteria, and demonstrate bidirectional fluidic flow within a microfluidic channel. (C) 2009 Optical Society of America ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2009
Optical trapping allows manipulating very small objects – varying from Angstöms to micron size particles – without physical contact by taking advantage of laser light. This technique, relying on light momentum transfer, allows manipulating biological matte ...