We experimentally demonstrate a scalable and reconfigurable optical tapped-delay-line (TDL) for multichannel equalization and correlation of 20-Gbaud quadrature-phase-shift-keyed (QPSK) signals using nonlinear wave mixing and a microresonator Kerr frequency comb. The optical TDL mainly consists of two stages: one being a multi-casting of the original signals in a periodically poled lithium niobate (PPLN) waveguide with Kerr comb lines functioning as mutually coherent pumps, while the other is a coherent multiplexing of the delayed and weighted signal replicas in a second PPLN. A two- or three-tap optical TDL is demonstrated to simultaneously equalize a distorted QPSK data signal, reducing the error vector magnitude (EVM) from 22.5% to either 19.9% or 18.2%, and search two- or three-symbol patterns on another QPSK signal. (C) 2018 Optical Society of America
Philip Johannes Walter Moll, Chunyu Guo, Hao Yang
Camille Sophie Brès, Anton Stroganov, Boris Zabelich, Christian André Clément Lafforgue, Edgars Nitiss