A Least-Squares/Relaxation Method for the Numerical Solution of the Three-Dimensional Elliptic Monge-Ampere Equation
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In a previous work we developed a convex infinite dimensional linear programming (LP) approach to approximating the region of attraction (ROA) of polynomial dynamical systems subject to compact basic semialgebraic state constraints. Finite dimensional rela ...
Real-Time Optimization (RTO) via modifier adaptation is a class of methods for which measurements are used to iteratively adapt the model via input-affine additive terms. The modifier terms correspond to the deviations between the measured and predicted co ...
We introduce a new convex formulation for stable principal component pursuit (SPCP) to decompose noisy signals into low-rank and sparse representations. For numerical solutions of our SPCP formulation, we first develop a convex variational framework and th ...
Motivated by the numerical treatment of parametric and stochastic PDEs, we analyze the least-squares method for polynomial approximation of multivariate func- tions based on random sampling according to a given probability measure. Recent work has shown th ...
We consider the class of convex minimization problems, composed of a self-concordant function, such as the logdet metric, a convex data fidelity term h and, a regularizing -- possibly non-smooth -- function g. This type of problems have recently attracted ...
We investigate the relation of two fundamental tools in machine learning and signal processing, that is the support vector machine (SVM) for classification, and the Lasso technique used in regression. We show that the resulting optimization problems are eq ...
The goal of this report is to study the method introduced by Adomian known as the Adomian Decomposition Method (ADM), which is used to find an approximate solution to nonlinear partial differential equations (PDEs) as a series expansion involving the recur ...
The idea of iterative process optimization based on collected output measurements, or "real-time optimization" (RTO), has gained much prominence in recent decades, with many RTO algorithms being proposed, researched, and developed. While the essential goal ...
The Virtual Reference Feedback Tuning (VRFT) approach is a design method that allow optimal feedback control laws to be derived from input-output (I/O) data only, without need of a model of the process. A drawback of this methods is that, in its standard f ...
We present a method for joint reconstruction of a set of images representing a given scene from few multi-view measurements obtained by compressed sensing. We model the correlation between measurements using global geometric transformations represented by ...