Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We study and demonstrate a Bloch-surface-wave-based nano-thin waveguide grating. The waveguide grating is characterized as a Bragg mirror at telecommunication wavelengths. The structure is a dielectric multilayer platform designed to sustain a Bloch surface wave. Such a platform is regarded as a foundation for in-plane integrated optics. The Kretschmann coupling configuration, as the most widely used approach, is utilized to excite the optical surface waves. We use multi-heterodyne scanning near-field optical microscopy to characterize the waveguide gratings in the near-field. The fabricated waveguide grating shows the expected Bragg mirror behavior with a measured reflectivity of approximately 72 % inside the photonic band gap lambda = 1553 nm.
, ,
, , ,