Energy filtering in silicon nanowires and nanosheets using a geometric superlattice and its use for steep-slope transistors
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Over the recent decades, the balance between increasing the complexity of computer chips and simultaneously reducing cost per bit has been accommodated by down-scaling. While extremely successful in the past, this approach now faces grave limitations leadi ...
Multi-gate devices e.g. gate-all-around (GAA) Si nanowires and FinFETs are promising can- didates for aggressive CMOS downscaling. Optimum subthreshold slope, immunity against short channel effect and optimized power consumption are the major benefits of s ...
Two-dimensional (2D) materials are a new class of materials with interesting physical properties and applications ranging from nanoelectronics to sensing and photonics. In addition to graphene, the most studied 2D material, monolayers of other layered mate ...
Tunnel FETs are the most promising ultra low power devices due to their potential of steeper subthreshold slopes and capability of using very low drive voltages. Switching is based on quantum mechanical band to band tunneling and no longer on thermal emiss ...
Silicon has been, and continues to be, the material support of integrated circuit (IC) technology-the enabling tool of one of the most impressive technological, industrial and social revolution of mankind. Silicon (both in monocrystalline and polycrystalli ...
The down-scaling of conventional MOSFETs has led to an impending power crisis, in which static power consumption is becoming too high. In order to improve the energy-efficiency of electronic circuits, small swing switches are interesting candidates to repl ...
This paper reports on the top-down fabrication and electrical performance of silicon nanowire (SiNW) gate-all-around (GAA) n-type and p-type MOSFET devices integrated on bulk silicon using a local-silicon-on-insulator (SOI) process. The proposed local-SOI ...
Semiconductor nanowires are an emerging class of nanostructures that represent attractive building blocks for nanoscale electronic and photonic devices. To the present, nanowires are synthesized on a small scale by experimentally demanding gas phase deposi ...
This thesis aims at the site-specific realization of self-assembled field-effect transistors (FETs) based on semiconducting Zinc oxide NWs and their application towards chemical and bio-sensing in liquid medium. At first, a solution based growth method for ...
Semiconductor nanowires offer a wide range of opportunities for newgenerations of nanoscale electronic and optic devices. For these applications to become reality, deeper understanding of the fundamental properties of the nanowires is required. In this the ...