Closed-circuit televisionClosed-circuit television (CCTV), also known as video surveillance, is the use of video cameras to transmit a signal to a specific place, on a limited set of monitors. It differs from broadcast television in that the signal is not openly transmitted, though it may employ point-to-point (P2P), point-to-multipoint (P2MP), or mesh wired or wireless links. Even though almost all video cameras fit this definition, the term is most often applied to those used for surveillance in areas that require additional security or ongoing monitoring (Videotelephony is seldom called "CCTV").
Convolutional neural networkConvolutional neural network (CNN) is a regularized type of feed-forward neural network that learns feature engineering by itself via filters (or kernel) optimization. Vanishing gradients and exploding gradients, seen during backpropagation in earlier neural networks, are prevented by using regularized weights over fewer connections. For example, for each neuron in the fully-connected layer 10,000 weights would be required for processing an image sized 100 × 100 pixels.
SurveillanceSurveillance is the monitoring of behavior, many activities, or information for the purpose of information gathering, influencing, managing or directing. This can include observation from a distance by means of electronic equipment, such as closed-circuit television (CCTV), or interception of electronically transmitted information like Internet traffic. It can also include simple technical methods, such as human intelligence gathering and postal interception. Surveillance is used by citizens for protecting their neighborhoods.
Deep learningDeep learning is part of a broader family of machine learning methods, which is based on artificial neural networks with representation learning. The adjective "deep" in deep learning refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.
Mass surveillanceMass surveillance is the intricate surveillance of an entire or a substantial fraction of a population in order to monitor that group of citizens. The surveillance is often carried out by local and federal governments or governmental organizations, such as organizations like the NSA, but it may also be carried out by corporations (either on behalf of governments or at their own initiative). Depending on each nation's laws and judicial systems, the legality of and the permission required to engage in mass surveillance varies.
Artificial intelligence for video surveillanceArtificial intelligence for video surveillance utilizes computer software programs that analyze the audio and images from video surveillance cameras in order to recognize humans, vehicles, objects, attributes, and events. Security contractors program the software to define restricted areas within the camera's view (such as a fenced off area, a parking lot but not the sidewalk or public street outside the lot) and program for times of day (such as after the close of business) for the property being protected by the camera surveillance.
Computer and network surveillanceComputer and network surveillance is the monitoring of computer activity and data stored locally on a computer or data being transferred over computer networks such as the Internet. This monitoring is often carried out covertly and may be completed by governments, corporations, criminal organizations, or individuals. It may or may not be legal and may or may not require authorization from a court or other independent government agencies. Computer and network surveillance programs are widespread today and almost all Internet traffic can be monitored.
Mass surveillance industryThe mass surveillance industry is a multibillion-dollar industry that has undergone phenomenal growth since 2001. According to data provided by The Wall Street Journal, the retail market for surveillance tools has grown from "nearly zero" in 2001 to about US5billionin2011.ThesizeofthevideosurveillancemarketrosetoUS13.5 billion in 2012 and is expected to reach US$39 billion by 2020. Video content analysisVideo content analysis or video content analytics (VCA), also known as video analysis or video analytics (VA), is the capability of automatically analyzing video to detect and determine temporal and spatial events. This technical capability is used in a wide range of domains including entertainment, video retrieval and video browsing, health-care, retail, automotive, transport, home automation, flame and smoke detection, safety, and security. The algorithms can be implemented as software on general-purpose machines, or as hardware in specialized video processing units.
Feature learningIn machine learning, feature learning or representation learning is a set of techniques that allows a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a specific task. Feature learning is motivated by the fact that machine learning tasks such as classification often require input that is mathematically and computationally convenient to process.