**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Testing Graph Clusterability: Algorithms and Lower Bounds

Abstract

We consider the problem of testing graph cluster structure: given access to a graph G = (V, E), can we quickly determine whether the graph can be partitioned into a few clusters with good inner conductance, or is far from any such graph? This is a generalization of the well-studied problem of testing graph expansion, where one wants to distinguish between the graph having good expansion (i.e. being a good single cluster) and the graph having a sparse cut (i.e. being a union of at least two clusters). A recent work of Czumaj, Peng, and Sohler (STOC'15) gave an ingenious sublinear time algorithm for testing k-clusterability in time (O) over tilde (n(1/2)poly(k)). Their algorithm implicitly embeds a random sample of vertices of the graph into Euclidean space, and then clusters the samples based on estimates of Euclidean distances between the points. This yields a very efficient testing algorithm, but only works if the cluster structure is very strong: it is necessary to assume that the gap between conductances of accepted and rejected graphs is at least logarithmic in the size of the graph G. In this paper we show how one can leverage more refined geometric information, namely angles as opposed to distances, to obtain a sublinear time tester that works even when the gap is a sufficiently large constant. Our tester is based on the singular value decomposition of a natural matrix derived from random walk transition probabilities from a small sample of seed nodes. We complement our algorithm with a matching lower bound on the query complexity of testing clusterability. Our lower bound is based on a novel property testing problem, which we analyze using Fourier analytic tools. As a byproduct of our techniques, we also achieve new lower bounds for the problem of approximating MAX-CUT value in sublinear time.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related MOOCs

Loading

Related MOOCs (1)

Related publications (4)

Related concepts (11)

Algorithm

In mathematics and computer science, an algorithm (ˈælɡərɪðəm) is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning), achieving automation eventually.

Sorting algorithm

In computer science, a sorting algorithm is an algorithm that puts elements of a list into an order. The most frequently used orders are numerical order and lexicographical order, and either ascending or descending. Efficient sorting is important for optimizing the efficiency of other algorithms (such as search and merge algorithms) that require input data to be in sorted lists. Sorting is also often useful for canonicalizing data and for producing human-readable output.

Problem solving

Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields. The former is an example of simple problem solving (SPS) addressing one issue, whereas the latter is complex problem solving (CPS) with multiple interrelated obstacles.

Loading

Loading

Loading

As it has become easier and cheaper to collect big datasets in the last few decades, designing efficient and low-cost algorithms for these datasets has attracted unprecedented attention. However, in m

Mikhail Kapralov, Jakab Tardos

Cut and spectral sparsification of graphs have numerous applications, including e.g. speeding up algorithms for cuts and Laplacian solvers. These powerful notions have recently been extended to hyperg

This thesis focuses on designing spectral tools for graph clustering in sublinear time. With the emergence of big data, many traditional polynomial time, and even linear time algorithms have become pr