Testing Graph Clusterability: Algorithms and Lower Bounds
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We define the crossing number for an embedding of a graph G into R^3, and prove a lower bound on it which almost implies the classical crossing lemma. We also give sharp bounds on the space crossing numbers of pseudo-random graphs. ...
The exponential number of possible subgraphs makes the problem of frequent subgraph mining a challenge. The set of maximal frequent subgraphs is much smaller to that of the set of frequent subgraphs providing ample scope for pruning. MARGIN is a maximal su ...
Graph theory is an important topic in discrete mathematics. It is particularly interesting because it has a wide range of applications. Among the main problems in graph theory, we shall mention the following ones: graph coloring and the Hamiltonian circuit ...
We present a simple randomized algorithmic framework for connected facility location problems. The basic idea is as follows: We run a black-box approximation algorithm for the unconnected facility location problem, randomly sample the clients, and open the ...
We describe a new sampling-based method to determine cuts in an undirected graph. For a graph (V, E), its cycle space is the family of all subsets of E that have even degree at each vertex. We prove that with high probability, sampling the cycle space iden ...
In this study we investigated the effect of medial temporal lobe epilepsy (MTLE) on the global characteristics of brain connectivity estimated by topological measures. We used DSI (Diffusion Spectrum Imaging) to construct a connectivity matrix where the no ...
The goal of transductive learning is to find a way to recover the labels of lots of data with only a few known samples. In this work, we will work on graphs for two reasons. First, it’s possible to construct a graph from a given dataset with features. The ...
Networks are everywhere and we are confronted with many networks in our daily life. Networks such as Internet, World Wide Web, social, biological and economical networks have been subject to extensive studies in the last decade. The volume of publications ...
This paper addresses the problem of determining the node locations in ad-hoc sensor networks when only connectivity information is available. In previous work, we showed that the localization algorithm MDS-MAP proposed by Y. Shang \textit{et al} is able to ...
This paper addresses the problem of the interpolation of 2-d spherical signals from non-uniformly sampled and noisy data. We propose a graph-based regularization algorithm to improve the signal reconstructed by local interpolation methods such as nearest n ...