**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Functional Data Analysis By Matrix Completion1

Abstract

Functional data analyses typically proceed by smoothing, followed by functional PCA. This paradigm implicitly assumes that rough variation is due to nuisance noise. Nevertheless, relevant functional features such as time-localised or short scale fluctuations may indeed be rough relative to the global scale, but still smooth at shorter scales. These may be confounded with the global smooth components of variation by the smoothing and PCA, potentially distorting the parsimony and interpretability of the analysis. The goal of this paper is to investigate how both smooth and rough variations can be recovered on the basis of discretely observed functional data. Assuming that a functional datum arises as the sum of two uncorrelated components, one smooth and one rough, we develop identifiability conditions for the recovery of the two corresponding covariance operators. The key insight is that they should possess complementary forms of parsimony: one smooth and finite rank (large scale), and the other banded and potentially infinite rank (small scale). Our conditions elucidate the precise interplay between rank, bandwidth and grid resolution. Under these conditions, we show that the recovery problem is equivalent to rank-constrained matrix completion, and exploit this to construct estimators of the two covariances, without assuming knowledge of the true bandwidth or rank; we study their asymptotic behaviour, and then use them to recover the smooth and rough components of each functional datum by best linear prediction. As a result, we effectively produce separate functional PCAs for smooth and rough variation.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (10)

Related publications (4)

Consistent estimator

In statistics, a consistent estimator or asymptotically consistent estimator is an estimator—a rule for computing estimates of a parameter θ0—having the property that as the number of data points used increases indefinitely, the resulting sequence of estimates converges in probability to θ0. This means that the distributions of the estimates become more and more concentrated near the true value of the parameter being estimated, so that the probability of the estimator being arbitrarily close to θ0 converges to one.

Functional data analysis

Functional data analysis (FDA) is a branch of statistics that analyses data providing information about curves, surfaces or anything else varying over a continuum. In its most general form, under an FDA framework, each sample element of functional data is considered to be a random function. The physical continuum over which these functions are defined is often time, but may also be spatial location, wavelength, probability, etc. Intrinsically, functional data are infinite dimensional.

Covariance

In probability theory and statistics, covariance is a measure of the joint variability of two random variables. If the greater values of one variable mainly correspond with the greater values of the other variable, and the same holds for the lesser values (that is, the variables tend to show similar behavior), the covariance is positive. In the opposite case, when the greater values of one variable mainly correspond to the lesser values of the other, (that is, the variables tend to show opposite behavior), the covariance is negative.

Functional time series is a temporally ordered sequence of not necessarily independent random curves. While the statistical analysis of such data has been traditionally carried out under the assumptio

Victor Panaretos, Tomas Masák, Tomas Rubin

Nonparametric inference for functional data over two-dimensional domains entails additional computational and statistical challenges, compared to the one-dimensional case. Separability of the covarian

Covariance operators play a fundamental role in functional data analysis, providing the canonical means to analyse functional variation via the celebrated Karhunen-Loève expansion. These operators may