Publication

Functional Data Analysis By Matrix Completion1

Résumé

Functional data analyses typically proceed by smoothing, followed by functional PCA. This paradigm implicitly assumes that rough variation is due to nuisance noise. Nevertheless, relevant functional features such as time-localised or short scale fluctuations may indeed be rough relative to the global scale, but still smooth at shorter scales. These may be confounded with the global smooth components of variation by the smoothing and PCA, potentially distorting the parsimony and interpretability of the analysis. The goal of this paper is to investigate how both smooth and rough variations can be recovered on the basis of discretely observed functional data. Assuming that a functional datum arises as the sum of two uncorrelated components, one smooth and one rough, we develop identifiability conditions for the recovery of the two corresponding covariance operators. The key insight is that they should possess complementary forms of parsimony: one smooth and finite rank (large scale), and the other banded and potentially infinite rank (small scale). Our conditions elucidate the precise interplay between rank, bandwidth and grid resolution. Under these conditions, we show that the recovery problem is equivalent to rank-constrained matrix completion, and exploit this to construct estimators of the two covariances, without assuming knowledge of the true bandwidth or rank; we study their asymptotic behaviour, and then use them to recover the smooth and rough components of each functional datum by best linear prediction. As a result, we effectively produce separate functional PCAs for smooth and rough variation.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.