Steady Three-Dimensional Rotational Flows: An Approach Via Two Stream Functions And Nash-Moser Iteration
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A boundary-fitted moving mesh scheme is presented for the simulation of two-phase flow in two-dimensional and axisymmetric geometries. The incompressible Navier-Stokes equations are solved using the finite element method, and the mini element is used to sa ...
Can every measure-valued solution to the compressible Euler equations be approximated by a sequence of weak solutions? We prove that the answer is negative: Generalizing a well-known rigidity result of Ball and James to a more general situation, we constru ...
Can every measure-valued solution to the compressible Euler equations be approximated by a sequence of weak solutions? We prove that the answer is negative: generalizing a well-known rigidity result of Ball and James to a more general situation, we constru ...
We consider minimizing a nonconvex, smooth function f on a Riemannian manifold M. We show that a perturbed version of Riemannian gradient descent algorithm converges to a second-order stationary point (and hence is able to escape saddle points on the manif ...
We seek to study numerically two-phase flow phenomena with phase change through the finite-element method (FEM) and the arbitrary Lagrangian-Eulerian (ALE) framework. This method is based on the so-called one-fluid formulation; thus, only one set of equati ...
To model a creeping flow through closed cracks in cracked materials we study a normal mechanical contact between two elastic half-spaces with rough surfaces is studied. The roughness is modeled using a filtering technique in Fourier space: the root mean sq ...
In an open, bounded subset Omega of R-N such that 0 is an element of Omega we consider the nonlinear eigenvalue problem -Sigma(N)(i,j,=1) partial derivative(i){A(ij)(x)partial derivative(j)u} + V(x)u + n(x,del u)+ g(x, u) = lambda u in Omega integral(Omega ...
The modeling of an incompressible fluid through a porous medium requires to deal with two systems of partial differential equations (PDEs) for the two types of media (fluid and porous). A possible way to couple theses two equations is by using the penaliza ...
Criteria for the bifurcation of small solutions of an equation F(lambda,u) = 0 from a line {(lambda,0): lambda is an element of R} of trivial solutions are usually based on properties of the DuF(lambda,0) at the trivial solutions, where the partial derivat ...
We consider the parabolic Anderson model driven by fractional noise: partial derivative/partial derivative t u(t,x) = k Delta u(t,x) + u(t,x)partial derivative/partial derivative t W(t,x) x is an element of Z(d), t >= 0, where k > 0 is a diffusion constant ...