Steady Three-Dimensional Rotational Flows: An Approach Via Two Stream Functions And Nash-Moser Iteration
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We consider minimizing a nonconvex, smooth function f on a Riemannian manifold M. We show that a perturbed version of Riemannian gradient descent algorithm converges to a second-order stationary point (and hence is able to escape saddle points on the manif ...
Can every measure-valued solution to the compressible Euler equations be approximated by a sequence of weak solutions? We prove that the answer is negative: Generalizing a well-known rigidity result of Ball and James to a more general situation, we constru ...
In an open, bounded subset Omega of R-N such that 0 is an element of Omega we consider the nonlinear eigenvalue problem -Sigma(N)(i,j,=1) partial derivative(i){A(ij)(x)partial derivative(j)u} + V(x)u + n(x,del u)+ g(x, u) = lambda u in Omega integral(Omega ...
Criteria for the bifurcation of small solutions of an equation F(lambda,u) = 0 from a line {(lambda,0): lambda is an element of R} of trivial solutions are usually based on properties of the DuF(lambda,0) at the trivial solutions, where the partial derivat ...
Can every measure-valued solution to the compressible Euler equations be approximated by a sequence of weak solutions? We prove that the answer is negative: generalizing a well-known rigidity result of Ball and James to a more general situation, we constru ...
The modeling of an incompressible fluid through a porous medium requires to deal with two systems of partial differential equations (PDEs) for the two types of media (fluid and porous). A possible way to couple theses two equations is by using the penaliza ...
We consider the parabolic Anderson model driven by fractional noise: partial derivative/partial derivative t u(t,x) = k Delta u(t,x) + u(t,x)partial derivative/partial derivative t W(t,x) x is an element of Z(d), t >= 0, where k > 0 is a diffusion constant ...
We seek to study numerically two-phase flow phenomena with phase change through the finite-element method (FEM) and the arbitrary Lagrangian-Eulerian (ALE) framework. This method is based on the so-called one-fluid formulation; thus, only one set of equati ...
A boundary-fitted moving mesh scheme is presented for the simulation of two-phase flow in two-dimensional and axisymmetric geometries. The incompressible Navier-Stokes equations are solved using the finite element method, and the mini element is used to sa ...
To model a creeping flow through closed cracks in cracked materials we study a normal mechanical contact between two elastic half-spaces with rough surfaces is studied. The roughness is modeled using a filtering technique in Fourier space: the root mean sq ...