Publication

Ductility reduction factor formulations for seismic design of RC wall and frame structures

Katrin Beyer, Matteo Zerbin
2019
Journal paper
Abstract

Seismic design of standard structures is typically founded on a force-based design approach. Over the years this approach has proven robust and easily applicable by design engineers and - in combination with capacity design principles - it provides a good protection against premature structural failures. However, it is also known that the force-based design approach as it is implemented in the current generation of seismic design codes suffers from some shortcomings; among these is the fact that the base shear is computed using a pre-defined force reduction factor, which is constant for a given structural system. Thus, for the same design input, structures of an identical type but different geometry are subjected to varying ductility demands and may perform differently during an earthquake. The objective of this research is to present an alternative formulation for computing force reduction factors for RC wall and frame structures, using simple analytical models which only require input data already available at the beginning of the design process. Such analytical models allow to link global to local ductility demands and therefore to compute an estimate of the force ductility reduction factors that lead to equal local ductility demands and expected damage levels. A series of pushover and nonlinear time history analyses are run on simplified numerical models of a set of wall and frame structures. The results show that the proposed alternative formulation yields a more accurate ductility reduction factor than the current Eurocode 8 design approach.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Fracture toughness
In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having plane strain conditions. Plane strain conditions give the lowest fracture toughness value which is a material property.
Seismic analysis
Seismic analysis is a subset of structural analysis and is the calculation of the response of a building (or nonbuilding) structure to earthquakes. It is part of the process of structural design, earthquake engineering or structural assessment and retrofit (see structural engineering) in regions where earthquakes are prevalent. As seen in the figure, a building has the potential to 'wave' back and forth during an earthquake (or even a severe wind storm). This is called the 'fundamental mode', and is the lowest frequency of building response.
Structural system
The term structural system or structural frame in structural engineering refers to the load-resisting sub-system of a building or object. The structural system transfers loads through interconnected elements or members. Commonly used structures can be classified into five major categories, depending on the type of primary stress that may arise in the members of the structures under major design loads. However any two or more of the basic structural types described in the following may be combined in a single structure, such as a building or a bridge in order to meet the structure's functional requirements.
Show more
Related publications (38)

Full Scale Experiments of a Composite Steel Moment Resisting Frame: Behavioral Insights and Implications on Seismic Design

Dimitrios Lignos, Hammad El Jisr

This paper discusses the cyclic performance of a heavily instrumented 2-bay full-scale composite-steel moment resisting frame (CMRF) sub-system from the onset of structural damage up until incipient collapse. The CMRF featured stiffened end plate bolted co ...
EEME2023

The Role of the Composite Floor System and Framing Action in the Seismic Performance of Composite Steel Moment-Resisting Frames

Hammad El Jisr

With the advent of performance-based earthquake engineering (PBEE), the need for reliable prediction of earthquake-induced collapse of structures is essential. Despite the significant progress that has been made towards this goal, there are several hurdles ...
EPFL2022

Experimental Study to Validate an Improved Approach to Design Acceleration-Sensitive Nonstructural Components

Dimitrios Lignos, Ahmed Mohamed Ahmed Elkady

Nonstructural components in buildings can be subjected to very large acceleration and deformation demands during earthquakes. This is particularly true for flexible components that are tuned or nearly tuned to one of the modal frequencies of the supporting ...
Applied Technology Council, Sponse2022
Show more
Related MOOCs (5)
Advanced Timber Plate Structural Design
A trans-disciplinary approach in structural design and digital architecture of timber structures with advanced manufacturing workflow.
The Art of Structures I - Cables and arcs
Ce cours présente les principes du fonctionnement, du dimensionnement et de la conception des structures. L'approche est basée sur une utilisation de la statique graphique et traite en particulier des
The Art of Structures I - Cables and arcs
L'art des structures propose une découverte du fonctionnement des structures porteuses, telles que les bâtiments, les toitures ou les ponts. Ce cours présente les principes du dimensionnement et les s
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.