Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Polarizable radical sites in distonic radical anions are stabilized by ostensibly remote negative charges. Computational evidence suggests bond dissociation energies of closed-shell precursors are significantly lowered by through-space interactions with a proximate negative charge, however direct experimental confirmation has proved challenging. Herein, we exploit two complementary tandem mass spectrometry strategies to probe the influence of a remote charge on the stability of nitroxyl radicals, and vice versa. Dissociation of negatively charge-tagged alkoxyamines reveals that the energetic onset of radical formation is dependent on the proximity and basicity of the charged group, thus providing direct evidence for a charge-induced stabilization of the nitroxyl radical. Complementary kinetic method experiments on a series of proton-bound dimers demonstrate that the presence of a nitroxyl radical decreases the proton affinity for a selection of proximate ionic groups. These data show excellent agreement with quantum-chemical calculations and provide a general framework to explore the magnitude and direction of charge-radical interactions through systematic exploration of the identity, polarity and the proximity of the ion to the radical site. These findings expand our fundamental understanding of radical ion ener-getics that underpin the application of distonic ions as models for neutral radical reactivity, and open new avenues for exploiting these interactions as chemical switches. (C) 2018 Elsevier B.V. All rights reserved.
Urs von Gunten, Yan Wang, Gang Yu, Yang Guo