Multi-objective optimizationMulti-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Multi-objective is a type of vector optimization that has been applied in many fields of science, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives.
Cluster analysisCluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters). It is a main task of exploratory data analysis, and a common technique for statistical data analysis, used in many fields, including pattern recognition, , information retrieval, bioinformatics, data compression, computer graphics and machine learning.
GenerationA generation refers to all of the people born and living at about the same time, regarded collectively. It can also be described as, "the average period, generally considered to be about 20–30 years, during which children are born and grow up, become adults, and begin to have children." In kinship terminology, it is a structural term designating the parent-child relationship. It is known as biogenesis, reproduction, or procreation in the biological sciences.
Data and information visualizationData and information visualization (data viz or info viz) is the practice of designing and creating easy-to-communicate and easy-to-understand graphic or visual representations of a large amount of complex quantitative and qualitative data and information with the help of static, dynamic or interactive visual items.
Greatest GenerationThe Greatest Generation, also known as the G.I. Generation and the World War II generation, is the Western demographic cohort following the Lost Generation and preceding the Silent Generation. The generation is generally defined as people born from 1901 to 1927. They were shaped by the Great Depression and were the primary generation composing the enlisted forces in World War II. Most people of the Greatest Generation are the parents of the Silent Generation and Baby Boomers, and, in turn, were the children of the Lost Generation.
Simple random sampleIn statistics, a simple random sample (or SRS) is a subset of individuals (a sample) chosen from a larger set (a population) in which a subset of individuals are chosen randomly, all with the same probability. It is a process of selecting a sample in a random way. In SRS, each subset of k individuals has the same probability of being chosen for the sample as any other subset of k individuals. A simple random sample is an unbiased sampling technique. Simple random sampling is a basic type of sampling and can be a component of other more complex sampling methods.
Silent GenerationThe Silent Generation, also known as the Traditionalist Generation, is the Western demographic cohort following the Greatest Generation and preceding the baby boomers. The generation is generally defined as people born from 1928 to 1945. By this definition and U.S. Census data, there were 23 million Silents in the United States as of 2019. In the United States, the Great Depression of the 1930s and World War II in the early-to-mid 1940s caused people to have fewer children and as a result, the generation is comparatively small.
Generation ZGeneration Z (often shortened to Gen Z), colloquially known as zoomers, is the demographic cohort succeeding Millennials and preceding Generation Alpha. Researchers and popular media use the mid-to-late 1990s as starting birth years and the early 2010s as ending birth years. Most members of Generation Z are children of Generation X or younger Baby Boomers. The older members may be the parents of the younger members of Generation Alpha.
Systematic samplingIn survey methodology, systematic sampling is a statistical method involving the selection of elements from an ordered sampling frame. The most common form of systematic sampling is an equiprobability method. In this approach, progression through the list is treated circularly, with a return to the top once the list ends. The sampling starts by selecting an element from the list at random and then every kth element in the frame is selected, where k, is the sampling interval (sometimes known as the skip): this is calculated as: where n is the sample size, and N is the population size.
Stratified samplingIn statistics, stratified sampling is a method of sampling from a population which can be partitioned into subpopulations. In statistical surveys, when subpopulations within an overall population vary, it could be advantageous to sample each subpopulation (stratum) independently. Stratification is the process of dividing members of the population into homogeneous subgroups before sampling. The strata should define a partition of the population.