Publication

5 GHz laterally-excited bulk-wave resonators (XBARs) based on thin platelets of lithium niobate

Abstract

In a free-standing 400-nm-thick platelet of crystalline ZY-LiNbO3, narrow electrodes (500 nm) placed periodically with a pitch of a few microns can eXcite standing shear-wave bulk acoustic resonances (XBARs), by utilising lateral electric fields oriented parallel to the crystalline Y-axis and parallel to the plane of the platelet. The resonance frequency of similar to 4800 MHz is determined mainly by the platelet thickness and only weakly depends on the electrode width and the pitch. Simulations show quality-factors (Q) at resonance and anti-resonance higher than 1000. Measurements of the first fabricated devices show a resonance Q-factor similar to 300, strong piezoelectric coupling similar to 25%, (indicated by the large Resonance-antiResonance frequency spacing, similar to 11%) and an impedance at resonance of a few ohms. The static capacitance of the devices, corresponds to the imaginary part of the impedance similar to 100 omega. This device opens the possibility for the development of low-loss, wide band, RF filters in the 3-6 GHz range for 4th and 5th generation (4G/5G) mobile phones. XBARs can be produced using standard optical photolithography and MEMS processes. The 3rd, 5th, 7th, and 9th harmonics were observed, up to 38 GHz, and are also promising for high frequency filter design.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.