Adaptation of Multiple Sound Source Localization Neural Networks with Weak Supervision and Domain-Adversarial Training
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
The ability to reason, plan and solve highly abstract problems is a hallmark of human intelligence. Recent advancements in artificial intelligence, propelled by deep neural networks, have revolutionized disciplines like computer vision and natural language ...
One prominent approach toward resolving the adversarial vulnerability of deep neural networks is the two-player zero-sum paradigm of adversarial training, in which predictors are trained against adversarially-chosen perturbations of data. Despite the promi ...
The way biological brains carry out advanced yet extremely energy efficient signal processing remains both fascinating and unintelligible. It is known however that at least some areas of the brain perform fast and low-cost processing relying only on a smal ...
The performance of machine learning algorithms is conditioned by the availability of training datasets, which is especially true for the field of nondestructive evaluation. Here we propose one reconfigurable specimen instead of numerous reference specimens ...
End-to-end learning methods like deep neural networks have been the driving force in the remarkable progress of machine learning in recent years. However, despite their success, the deployment process of such networks in safety-critical use cases, such as ...
Deep neural networks may easily memorize noisy labels present in real-world data, which degrades their ability to generalize. It is therefore important to track and evaluate the robustness of models against noisy label memorization. We propose a metric, ca ...
Recent work has proposed novel data augmentation methods to improve the adversarial robustness of deep neural networks. In this paper, we re-evaluate such methods through the lens of different metrics that characterize the augmented manifold, finding contr ...
According to the proposed Artificial Intelligence Act by the European Comission (expected to pass at the end of 2023), the class of High-Risk AI Systems (Title III) comprises several important applications of Deep Learning like autonomous driving vehicles ...
This paper investigates the potential impact of deep generative models on the work of creative professionals. We argue that current generative modeling tools lack critical features that would make them useful creativity support tools, and introduce our own ...