Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
DYN3D is a well-established Light Water Reactor (LWR) simulation tool and is being extended for safety analyses of Sodium cooled Fast Reactors (SFRs) at the Helmholtz-Zentrum Dresden-Rossendorf. This thesis focuses on the first stage of the development process, that is, the extension and application of DYN3D for steady-state and transient SFR calculations on reactor core level.
In contrast to LWRs, the SFR behavior is especially sensitive to thermal expansions of the reactor components. Therefore, a new thermal-mechanical module accounting for thermal expansions is implemented into DYN3D. At first step, this module is capable of treating two important thermal expansion effects occurring within the core, namely axial expansion of fuel rods and radial expansion of diagrid.
In order to perform nodal calculations with DYN3D, pre-generated homogenized few-group cross sections (XS) are necessarily needed. Therefore, prior to the development of thermal expansion models, a general methodology for XS generation is established for SFR nodal calculations based on the use of the Monte Carlo code Serpent.
The new methodological developments presented in this thesis are verified against the Monte Carlo solutions of Serpent. Two SFR cores are used for testing: the large oxide core of the OECD/NEA benchmark and a smaller core from the Phenix end-of-life tests. Finally, the extended DYN3D is validated against selected IAEA benchmark tests on the Phenix end-of-life experiments that contain both steady-state and transient calculations.
The contribution to the SFR-related developments at the HZDR, as presented in this thesis, makes it possible of performing steady-state and transient calculations for SFRs on reactor core level by using DYN3D. With this study, the basis of the next stage of DYN3D developments is established, that is, the up-scale of SFR analysis to system level can continue by coupling with a sodium capable thermal-hydraulic system code.
Andreas Pautz, Vincent Pierre Lamirand, Mathieu Hursin, Thomas Jean-François Ligonnet, Tom Mager, Won Dong Shin
Andreas Pautz, Vincent Pierre Lamirand, Mathieu Hursin, Oskari Ville Pakari, Thomas Jean-François Ligonnet, Tom Mager