Alternative hypothesisIn statistical hypothesis testing, the alternative hypothesis is one of the proposed proposition in the hypothesis test. In general the goal of hypothesis test is to demonstrate that in the given condition, there is sufficient evidence supporting the credibility of alternative hypothesis instead of the exclusive proposition in the test (null hypothesis). It is usually consistent with the research hypothesis because it is constructed from literature review, previous studies, etc.
Parametric familyIn mathematics and its applications, a parametric family or a parameterized family is a family of objects (a set of related objects) whose differences depend only on the chosen values for a set of parameters. Common examples are parametrized (families of) functions, probability distributions, curves, shapes, etc. Statistical model For example, the probability density function fX of a random variable X may depend on a parameter θ. In that case, the function may be denoted to indicate the dependence on the parameter θ.
Observed informationIn statistics, the observed information, or observed Fisher information, is the negative of the second derivative (the Hessian matrix) of the "log-likelihood" (the logarithm of the likelihood function). It is a sample-based version of the Fisher information. Suppose we observe random variables , independent and identically distributed with density f(X; θ), where θ is a (possibly unknown) vector.
Wilcoxon signed-rank testThe Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used either to test the location of a population based on a sample of data, or to compare the locations of two populations using two matched samples. The one-sample version serves a purpose similar to that of the one-sample Student's t-test. For two matched samples, it is a paired difference test like the paired Student's t-test (also known as the "t-test for matched pairs" or "t-test for dependent samples").
Informant (statistics)In statistics, the informant (or score) is the gradient of the log-likelihood function with respect to the parameter vector. Evaluated at a particular point of the parameter vector, the score indicates the steepness of the log-likelihood function and thereby the sensitivity to infinitesimal changes to the parameter values. If the log-likelihood function is continuous over the parameter space, the score will vanish at a local maximum or minimum; this fact is used in maximum likelihood estimation to find the parameter values that maximize the likelihood function.
Test scoreA test score is a piece of information, usually a number, that conveys the performance of an examinee on a test. One formal definition is that it is "a summary of the evidence contained in an examinee's responses to the items of a test that are related to the construct or constructs being measured." Test scores are interpreted with a norm-referenced or criterion-referenced interpretation, or occasionally both. A norm-referenced interpretation means that the score conveys meaning about the examinee with regards to their standing among other examinees.
Test oracleIn computing, software engineering, and software testing, a test oracle (or just oracle) is a mechanism for determining whether a test has passed or failed. The use of oracles involves comparing the output(s) of the system under test, for a given test-case input, to the output(s) that the oracle determines that product should have. The term "test oracle" was first introduced in a paper by William E. Howden. Additional work on different kinds of oracles was explored by Elaine Weyuker.