In statistical hypothesis testing, the alternative hypothesis is one of the proposed proposition in the hypothesis test. In general the goal of hypothesis test is to demonstrate that in the given condition, there is sufficient evidence supporting the credibility of alternative hypothesis instead of the exclusive proposition in the test (null hypothesis). It is usually consistent with the research hypothesis because it is constructed from literature review, previous studies, etc. However, the research hypothesis is sometimes consistent with the null hypothesis. In statistics, alternative hypothesis is often denoted as Ha or H1. Hypotheses are formulated to compare in a statistical hypothesis test. In the domain of inferential statistics two rival hypotheses can be compared by explanatory power and predictive power. The alternative hypothesis and null hypothesis are types of conjectures used in statistical tests, which are formal methods of reaching conclusions or making judgments on the basis of data. In statistical hypothesis testing, the null hypothesis and alternative hypothesis are two mutually exclusive statements. "The statement being tested in a test of statistical significance is called the null hypothesis. The test of significance is designed to assess the strength of the evidence against the null hypothesis. Usually, the null hypothesis is a statement of 'no effect' or 'no difference'." Null hypothesis is often denoted as H0. The statement that is being tested against the null hypothesis is the alternative hypothesis. Alternative hypothesis is often denoted as Ha or H1. In statistical hypothesis testing, to prove the alternative hypothesis is true, it should be shown that the data is contradictory to the null hypothesis. Namely, there is sufficient evidence against null hypothesis to demonstrate that the alternative hypothesis is true. One example is where water quality in a stream has been observed over many years, and a test is made of the null hypothesis that "there is no change in quality between the first and second halves of the data", against the alternative hypothesis that "the quality is poorer in the second half of the record".

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
CS-411: Digital education
This course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies: do student actually l
BIO-449: Understanding statistics and experimental design
This course is neither an introduction to the mathematics of statistics nor an introduction to a statistics program such as R. The aim of the course is to understand statistics from its experimental d
COM-406: Foundations of Data Science
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
Show more
Related lectures (142)
Quantile Regression: Linear Optimization
Covers quantile regression, focusing on linear optimization for predicting outputs and discussing sensitivity to outliers, problem formulation, and practical implementation.
Statistical Mediation and Moderation
Explores statistical mediation, moderation, ANOVA, and hypothesis testing.
Introduction to ANOVA
Covers the basics of ANOVA using a case study on sleeping pill effectiveness.
Show more
Related publications (104)

From trees to barcodes and back again II: Combinatorial and probabilistic aspects of a topological inverse problem

Kathryn Hess Bellwald, Lida Kanari, Adélie Eliane Garin

In this paper we consider two aspects of the inverse problem of how to construct merge trees realizing a given barcode. Much of our investigation exploits a recently discovered connection between the symmetric group and barcodes in general position, based ...
2024

Social Opinion Formation and Decision Making Under Communication Trends

Ali H. Sayed, Mert Kayaalp, Virginia Bordignon

This work studies the learning process over social networks under partial and random information sharing. In traditional social learning models, agents exchange full belief information with each other while trying to infer the true state of nature. We stud ...
Piscataway2024

Querying the Digital Archive of Science: Distant Reading, Semantic Modelling and Representation of Knowledge

Alina Volynskaya

The archive of science is a place where scientific practices are sedimented in the form of drafts, protocols of rejected hypotheses and failed experiments, obsolete instruments, outdated visualizations and other residues. Today, just as science goes more a ...
EPFL2024
Show more
Related concepts (13)
Test statistic
A test statistic is a statistic (a quantity derived from the sample) used in statistical hypothesis testing. A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a data-set that reduces the data to one value that can be used to perform the hypothesis test. In general, a test statistic is selected or defined in such a way as to quantify, within observed data, behaviours that would distinguish the null from the alternative hypothesis, where such an alternative is prescribed, or that would characterize the null hypothesis if there is no explicitly stated alternative hypothesis.
Hypothesis
A hypothesis (: hypotheses) is a proposed explanation for a phenomenon. For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous observations that cannot satisfactorily be explained with the available scientific theories. Even though the words "hypothesis" and "theory" are often used interchangeably, a scientific hypothesis is not the same as a scientific theory.
P-value
In null-hypothesis significance testing, the p-value is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis. Even though reporting p-values of statistical tests is common practice in academic publications of many quantitative fields, misinterpretation and misuse of p-values is widespread and has been a major topic in mathematics and metascience.
Show more
Related MOOCs (5)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.