Penalization and Bayesian numerical methods for multiscale inverse problems
Related publications (125)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We study the large deviations of the power injected by the active force for an active Ornstein-Uhlenbeck particle (AOUP), free or in a confining potential. For the free-particle case, we compute the rate function analytically in d-dimensions from a saddle- ...
We present a novel probabilistic finite element method (FEM) for the solution and uncertainty quantification of elliptic partial differential equations based on random meshes, which we call random mesh FEM (RM-FEM). Our methodology allows to introduce a pr ...
Optimized Schwarz Methods (OSMs) are based on optimized transmission conditions along the interfaces between the subdomains. Optimized transmission conditions are derived at the theoretical level, using techniques developed in the last decades. The hypothe ...
Because of their robustness, efficiency and non-intrusiveness, Monte Carlo methods are probably the most popular approach in uncertainty quantification to computing expected values of quantities of interest (QoIs). Multilevel Monte Carlo (MLMC) methods sig ...
Multiscale problems, such as modelling flows through porous media or predicting the mechanical properties of composite materials, are of great interest in many scientific areas. Analytical models describing these phenomena are rarely available, and one mus ...
In this work, we consider the approximation of Hilbert space-valued meromorphic functions that arise as solution maps of parametric PDEs whose operator is the shift of an operator with normal and compact resolvent, e.g., the Helmholtz equation. In this res ...
A novel probabilistic numerical method for quantifying the uncertainty induced by the time integration of ordinary differential equations (ODEs) is introduced. Departing from the classical strategy to randomize ODE solvers by adding a random forcing term, ...
A new strategy based on numerical homogenization and Bayesian techniques for solving multiscale inverse problems is introduced. We consider a class of elliptic problems which vary at a microscopic scale, and we aim at recovering the highly oscillatory tens ...
The numerical solution of the stepped pressure equilibrium (Hudson et al 2012 Phys. Plasmas 19 112502) requires a fast and robust solver to obtain the Beltrami field in three-dimensional geometry such as stellarators. The spectral method implemented in the ...
This thesis is devoted to the derivation of a posteriori error estimates for the numerical approximation of fluids flows separated by a free surface. Based on these estimates, error indicators are introduced and adaptive algorithms are proposed to solve th ...